Source code for autosklearn.estimators

# -*- encoding: utf-8 -*-
from __future__ import annotations

from typing import (
    Any,
    Dict,
    Iterable,
    List,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

import warnings

import dask.distributed
import joblib
import numpy as np
import pandas as pd
from ConfigSpace.configuration_space import Configuration, ConfigurationSpace
from scipy.sparse import spmatrix
from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin
from sklearn.ensemble import VotingClassifier, VotingRegressor
from sklearn.utils.multiclass import type_of_target
from smac.runhistory.runhistory import RunInfo, RunValue
from typing_extensions import Literal

from autosklearn.automl import AutoML, AutoMLClassifier, AutoMLRegressor
from autosklearn.data.validation import (
    SUPPORTED_FEAT_TYPES,
    SUPPORTED_TARGET_TYPES,
    convert_if_sparse,
)
from autosklearn.ensembles.abstract_ensemble import AbstractEnsemble
from autosklearn.ensembles.ensemble_selection import EnsembleSelection
from autosklearn.ensembles.multiobjective_dummy_ensemble import (
    MultiObjectiveDummyEnsemble,
)
from autosklearn.metrics import Scorer
from autosklearn.pipeline.base import BasePipeline
from autosklearn.util.smac_wrap import SMACCallback


class AutoSklearnEstimator(BaseEstimator):
    def __init__(
        self,
        time_left_for_this_task=3600,
        per_run_time_limit=None,
        initial_configurations_via_metalearning=25,
        ensemble_size: int | None = None,
        ensemble_class: Type[AbstractEnsemble] | Literal["default"] | None = "default",
        ensemble_kwargs: Dict[str, Any] | None = None,
        ensemble_nbest=50,
        max_models_on_disc=50,
        seed=1,
        memory_limit=3072,
        include: Optional[Dict[str, List[str]]] = None,
        exclude: Optional[Dict[str, List[str]]] = None,
        resampling_strategy="holdout",
        resampling_strategy_arguments=None,
        tmp_folder=None,
        delete_tmp_folder_after_terminate=True,
        n_jobs: Optional[int] = None,
        dask_client: Optional[dask.distributed.Client] = None,
        disable_evaluator_output=False,
        get_smac_object_callback=None,
        smac_scenario_args=None,
        logging_config=None,
        metadata_directory=None,
        metric: Scorer | Sequence[Scorer] | None = None,
        scoring_functions: Optional[List[Scorer]] = None,
        load_models: bool = True,
        get_trials_callback: SMACCallback | None = None,
        dataset_compression: Union[bool, Mapping[str, Any]] = True,
        allow_string_features: bool = True,
        disable_progress_bar: bool = False,
    ):
        """
        Parameters
        ----------
        time_left_for_this_task : int, optional (default=3600)
            Time limit in seconds for the search of appropriate
            models. By increasing this value, *auto-sklearn* has a higher
            chance of finding better models.

        per_run_time_limit : int, optional (default=1/10 of time_left_for_this_task)
            Time limit for a single call to the machine learning model.
            Model fitting will be terminated if the machine learning
            algorithm runs over the time limit. Set this value high enough so
            that typical machine learning algorithms can be fit on the
            training data.

        initial_configurations_via_metalearning : int, optional (default=25)
            Initialize the hyperparameter optimization algorithm with this
            many configurations which worked well on previously seen
            datasets. Disable if the hyperparameter optimization algorithm
            should start from scratch.

        ensemble_size : int, optional
            Number of models added to the ensemble built by *Ensemble
            selection from libraries of models*. Models are drawn with
            replacement. If set to ``0`` no ensemble is fit.

            Deprecated - will be removed in Auto-sklearn 0.16. Please pass
            this argument via ``ensemble_kwargs={"ensemble_size": int}``
            if you want to change the ensemble size for ensemble selection.

        ensemble_class : Type[AbstractEnsemble] | "default", optional (default="default")
            Class implementing the post-hoc ensemble algorithm. Set to
            ``None`` to disable ensemble building or use :class:`SingleBest`
            to obtain only use the single best model instead of an
            ensemble.

            If set to "default" it will use :class:`EnsembleSelection` for
            single-objective problems and :class:`MultiObjectiveDummyEnsemble`
            for multi-objective problems.

        ensemble_kwargs : Dict, optional
            Keyword arguments that are passed to the ensemble class upon
            initialization.

        ensemble_nbest : int, optional (default=50)
            Only consider the ``ensemble_nbest`` models when building an
            ensemble. This is inspired by a concept called library pruning
            introduced in `Getting Most out of Ensemble Selection`. This
            is independent of the ``ensemble_class`` argument and this
            pruning step is done prior to constructing an ensemble.

        max_models_on_disc: int, optional (default=50),
            Defines the maximum number of models that are kept in the disc.
            The additional number of models are permanently deleted. Due to the
            nature of this variable, it sets the upper limit on how many models
            can be used for an ensemble.
            It must be an integer greater or equal than 1.
            If set to None, all models are kept on the disc.

        seed : int, optional (default=1)
            Used to seed SMAC. Will determine the output file names.

        memory_limit : int, optional (3072)
            Memory limit in MB for the machine learning algorithm.
            `auto-sklearn` will stop fitting the machine learning algorithm if
            it tries to allocate more than ``memory_limit`` MB.

            **Important notes:**

            * If ``None`` is provided, no memory limit is set.
            * In case of multi-processing, ``memory_limit`` will be *per job*, so the total usage is
              ``n_jobs x memory_limit``.
            * The memory limit also applies to the ensemble creation process.

        include : Optional[Dict[str, List[str]]] = None
            If None, all possible algorithms are used.

            Otherwise, specifies a step and the components that are included in search.
            See ``/pipeline/components/<step>/*`` for available components.

            Incompatible with parameter ``exclude``.

            **Possible Steps**:

            * ``"data_preprocessor"``
            * ``"balancing"``
            * ``"feature_preprocessor"``
            * ``"classifier"`` - Only for when when using ``AutoSklearnClasssifier``
            * ``"regressor"`` - Only for when when using ``AutoSklearnRegressor``

            **Example**:

            .. code-block:: python

                include = {
                    'classifier': ["random_forest"],
                    'feature_preprocessor': ["no_preprocessing"]
                }

        exclude : Optional[Dict[str, List[str]]] = None
            If None, all possible algorithms are used.

            Otherwise, specifies a step and the components that are excluded from search.
            See ``/pipeline/components/<step>/*`` for available components.

            Incompatible with parameter ``include``.

            **Possible Steps**:

            * ``"data_preprocessor"``
            * ``"balancing"``
            * ``"feature_preprocessor"``
            * ``"classifier"`` - Only for when when using ``AutoSklearnClasssifier``
            * ``"regressor"`` - Only for when when using ``AutoSklearnRegressor``

            **Example**:

            .. code-block:: python

                exclude = {
                    'classifier': ["random_forest"],
                    'feature_preprocessor': ["no_preprocessing"]
                }

        resampling_strategy : str | BaseCrossValidator | _RepeatedSplits | BaseShuffleSplit = "holdout"
            How to to handle overfitting, might need to use ``resampling_strategy_arguments``
            if using ``"cv"`` based method or a Splitter object.

            * **Options**
                *   ``"holdout"`` - Use a 67:33 (train:test) split
                *   ``"cv"``: perform cross validation, requires "folds" in ``resampling_strategy_arguments``
                *   ``"holdout-iterative-fit"`` - Same as "holdout" but iterative fit where possible
                *   ``"cv-iterative-fit"``: Same as "cv" but iterative fit where possible
                *   ``"partial-cv"``: Same as "cv" but uses intensification.
                *   ``BaseCrossValidator`` - any BaseCrossValidator subclass (found in scikit-learn model_selection module)
                *   ``_RepeatedSplits`` - any _RepeatedSplits subclass (found in scikit-learn model_selection module)
                *   ``BaseShuffleSplit`` - any BaseShuffleSplit subclass (found in scikit-learn model_selection module)

            If using a Splitter object that relies on the dataset retaining it's current
            size and order, you will need to look at the ``dataset_compression`` argument
            and ensure that ``"subsample"`` is not included in the applied compression
            ``"methods"`` or disable it entirely with ``False``.

        resampling_strategy_arguments : Optional[Dict] = None
            Additional arguments for ``resampling_strategy``, this is required if
            using a ``cv`` based strategy. The default arguments if left as ``None``
            are:

            .. code-block:: python

                {
                    "train_size": 0.67,     # The size of the training set
                    "shuffle": True,        # Whether to shuffle before splitting data
                    "folds": 5              # Used in 'cv' based resampling strategies
                }

            If using a custom splitter class, which takes ``n_splits`` such as
            `PredefinedSplit <https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn-model-selection-kfold>`_,
            the value of ``"folds"`` will be used.

        tmp_folder : string, optional (None)
            folder to store configuration output and log files, if ``None``
            automatically use ``/tmp/autosklearn_tmp_$pid_$random_number``

        delete_tmp_folder_after_terminate: bool, optional (True)
            remove tmp_folder, when finished. If tmp_folder is None
            tmp_dir will always be deleted

        n_jobs : int, optional, experimental
            The number of jobs to run in parallel for ``fit()``. ``-1`` means
            using all processors.

            **Important notes**:

            * By default, Auto-sklearn uses one core.
            * Ensemble building is not affected by ``n_jobs`` but can be controlled by the number
              of models in the ensemble.
            * ``predict()`` is not affected by ``n_jobs`` (in contrast to most scikit-learn models)
            * If ``dask_client`` is ``None``, a new dask client is created.

        dask_client : dask.distributed.Client, optional
            User-created dask client, can be used to start a dask cluster and then
            attach auto-sklearn to it.

        disable_evaluator_output: bool or list, optional (False)
            If True, disable model and prediction output. Cannot be used
            together with ensemble building. ``predict()`` cannot be used when
            setting this True. Can also be used as a list to pass more
            fine-grained information on what to save. Allowed elements in the
            list are:

            * ``'y_optimization'`` : do not save the predictions for the
              optimization set, which would later on be used to build an ensemble.

            * ``model`` : do not save any model files

        smac_scenario_args : dict, optional (None)
            Additional arguments inserted into the scenario of SMAC. See the
            `SMAC documentation <https://automl.github.io/SMAC3/main/api/smac.scenario.html#smac.scenario.Scenario>`_
            for a list of available arguments.

        get_smac_object_callback : callable
            Callback function to create an object of class
            `smac.facade.AbstractFacade <https://automl.github.io/SMAC3/main/api/smac.facade.html>`_.
            The function must accept the arguments ``scenario_dict``,
            ``instances``, ``num_params``, ``runhistory``, ``seed`` and ``ta``.
            This is an advanced feature. Use only if you are familiar with
            `SMAC <https://automl.github.io/SMAC3/main/index.html>`_.

        logging_config : dict, optional (None)
            dictionary object specifying the logger configuration. If None,
            the default logging.yaml file is used, which can be found in
            the directory ``util/logging.yaml`` relative to the installation.

        metadata_directory : str, optional (None)
            path to the metadata directory. If None, the default directory
            (autosklearn.metalearning.files) is used.

        metric : Scorer, optional (None)
            An instance of :class:`autosklearn.metrics.Scorer` as created by
            :meth:`autosklearn.metrics.make_scorer`. These are the `Built-in
            Metrics`_.
            If None is provided, a default metric is selected depending on the task.

        scoring_functions : List[Scorer], optional (None)
            List of scorers which will be calculated for each pipeline and results will be
            available via ``cv_results``

        load_models : bool, optional (True)
            Whether to load the models after fitting Auto-sklearn.

        get_trials_callback: callable
            A callable with the following definition.

            * (smac.SMBO, smac.RunInfo, smac.RunValue, time_left: float) -> bool | None

            This will be called after SMAC, the underlying optimizer for autosklearn,
            finishes training each run.

            You can use this to record your own information about the optimization
            process. You can also use this to enable a early stopping based on some
            critera.

            See the example:
            :ref:`Early Stopping And Callbacks <sphx_glr_examples_40_advanced_example_early_stopping_and_callbacks.py>`.

        dataset_compression: Union[bool, Mapping[str, Any]] = True
            We compress datasets so that they fit into some predefined amount of memory.
            Currently this does not apply to dataframes or sparse arrays, only to raw
            numpy arrays.

            **NOTE** - If using a custom ``resampling_strategy`` that relies on specific
            size or ordering of data, this must be disabled to preserve these properties.

            You can disable this entirely by passing ``False`` or leave as the default
            ``True`` for configuration below.

            .. code-block:: python

                {
                    "memory_allocation": 0.1,
                    "methods": ["precision", "subsample"]
                }

            You can also pass your own configuration with the same keys and choosing
            from the available ``"methods"``.

            The available options are described here:

            * **memory_allocation**
                By default, we attempt to fit the dataset into ``0.1 * memory_limit``.
                This float value can be set with ``"memory_allocation": 0.1``.
                We also allow for specifying absolute memory in MB, e.g. 10MB is
                ``"memory_allocation": 10``.

                The memory used by the dataset is checked after each reduction method is
                performed. If the dataset fits into the allocated memory, any further
                methods listed in ``"methods"`` will not be performed.

                For example, if ``methods: ["precision", "subsample"]`` and the
                ``"precision"`` reduction step was enough to make the dataset fit into
                memory, then the ``"subsample"`` reduction step will not be performed.

            * **methods**
                We provide the following methods for reducing the dataset size.
                These can be provided in a list and are performed in the order as given.

                *   ``"precision"`` - We reduce floating point precision as follows:
                    *   ``np.float128 -> np.float64``
                    *   ``np.float96 -> np.float64``
                    *   ``np.float64 -> np.float32``

                *   ``subsample`` - We subsample data such that it **fits directly into
                    the memory allocation** ``memory_allocation * memory_limit``.
                    Therefore, this should likely be the last method listed in
                    ``"methods"``.
                    Subsampling takes into account classification labels and stratifies
                    accordingly. We guarantee that at least one occurrence of each
                    label is included in the sampled set.

        allow_string_features: bool = True
            Whether autosklearn should process string features. By default the
            textpreprocessing is enabled.

        disable_progress_bar: bool = False
            Whether to disable the progress bar that is displayed in the console
            while fitting to the training data.

        Attributes
        ----------
        cv_results_ : dict of numpy (masked) ndarrays
            A dict with keys as column headers and values as columns, that can be
            imported into a pandas ``DataFrame``.

            Not all keys returned by scikit-learn are supported yet.

        performance_over_time_ : pandas.core.frame.DataFrame
            A ``DataFrame`` containing the models performance over time data. Can be
            used for plotting directly. Please refer to the example
            :ref:`Train and Test Inputs <sphx_glr_examples_40_advanced_example_pandas_train_test.py>`.

        """  # noqa (links are too long)
        # Raise error if the given total time budget is less than 30 seconds.
        if time_left_for_this_task < 30:
            raise ValueError("Time left for this task must be at least " "30 seconds. ")
        self.time_left_for_this_task = time_left_for_this_task
        self.per_run_time_limit = per_run_time_limit
        self.initial_configurations_via_metalearning = (
            initial_configurations_via_metalearning
        )

        # Need to resolve the ensemble class here so we can act on it below.
        if ensemble_class == "default":
            ensemble_class = self._resolve_ensemble_class(metric)

        self.ensemble_class = ensemble_class

        # User specified `ensemble_size` explicitly, warn them about deprecation
        if ensemble_size is not None:
            # Keep consistent behaviour
            message = (
                "`ensemble_size` has been deprecated, please use `ensemble_kwargs = "
                "{'ensemble_size': %d}`. Inserting `ensemble_size` into "
                "`ensemble_kwargs` for now. `ensemble_size` will be removed in "
                "auto-sklearn 0.16."
            ) % ensemble_size
            if ensemble_class == EnsembleSelection:
                if ensemble_kwargs is None:
                    ensemble_kwargs = {"ensemble_size": ensemble_size}
                    warnings.warn(message, DeprecationWarning, stacklevel=2)
                elif "ensemble_size" not in ensemble_kwargs:
                    ensemble_kwargs["ensemble_size"] = ensemble_size
                    warnings.warn(message, DeprecationWarning, stacklevel=2)
                else:
                    warnings.warn(
                        "Deprecated argument `ensemble_size` is both provided "
                        "as an argument to the constructor and passed inside "
                        "`ensemble_kwargs`. Will ignore the argument and use "
                        "the value given in `ensemble_kwargs` (%d). `ensemble_size` "
                        "will be removed in auto-sklearn 0.16."
                        % ensemble_kwargs["ensemble_size"],
                        DeprecationWarning,
                        stacklevel=2,
                    )
            else:
                warnings.warn(
                    "`ensemble_size` has been deprecated, please use "
                    "`ensemble_kwargs = {'ensemble_size': %d} if this "
                    "was intended. Ignoring `ensemble_size` because "
                    "`ensemble_class` != EnsembleSelection. "
                    "`ensemble_size` will be removed in auto-sklearn 0.16."
                    % ensemble_size,
                    DeprecationWarning,
                    stacklevel=2,
                )
        self.ensemble_size = (
            ensemble_size  # Otherwise sklean.base.get_params() will complain
        )
        self.ensemble_kwargs = ensemble_kwargs
        self.ensemble_nbest = ensemble_nbest
        self.max_models_on_disc = max_models_on_disc
        self.seed = seed
        self.memory_limit = memory_limit
        self.include = include
        self.exclude = exclude
        self.resampling_strategy = resampling_strategy
        self.resampling_strategy_arguments = resampling_strategy_arguments
        self.tmp_folder = tmp_folder
        self.delete_tmp_folder_after_terminate = delete_tmp_folder_after_terminate
        self.n_jobs = n_jobs
        self.dask_client = dask_client
        self.disable_evaluator_output = disable_evaluator_output
        self.get_smac_object_callback = get_smac_object_callback
        self.smac_scenario_args = smac_scenario_args
        self.logging_config = logging_config
        self.metadata_directory = metadata_directory
        self.metric = metric
        self.scoring_functions = scoring_functions
        self.load_models = load_models
        self.get_trials_callback = get_trials_callback
        self.dataset_compression = dataset_compression
        self.allow_string_features = allow_string_features
        self.disable_progress_bar = disable_progress_bar

        self.automl_ = None  # type: Optional[AutoML]

        # Handle the number of jobs and the time for them
        self._n_jobs = None
        if self.n_jobs is None or self.n_jobs == 1:
            self._n_jobs = 1
        elif self.n_jobs == -1:
            self._n_jobs = joblib.cpu_count()
        else:
            self._n_jobs = self.n_jobs

        super().__init__()

    def __getstate__(self):
        # Cannot serialize a client!
        self.dask_client = None
        return self.__dict__

    def build_automl(self):

        initial_configs = self.initial_configurations_via_metalearning
        automl = self._get_automl_class()(
            temporary_directory=self.tmp_folder,
            delete_tmp_folder_after_terminate=self.delete_tmp_folder_after_terminate,
            time_left_for_this_task=self.time_left_for_this_task,
            per_run_time_limit=self.per_run_time_limit,
            initial_configurations_via_metalearning=initial_configs,
            ensemble_class=self.ensemble_class,
            ensemble_kwargs=self.ensemble_kwargs,
            ensemble_nbest=self.ensemble_nbest,
            max_models_on_disc=self.max_models_on_disc,
            seed=self.seed,
            memory_limit=self.memory_limit,
            include=self.include,
            exclude=self.exclude,
            resampling_strategy=self.resampling_strategy,
            resampling_strategy_arguments=self.resampling_strategy_arguments,
            n_jobs=self._n_jobs,
            dask_client=self.dask_client,
            get_smac_object_callback=self.get_smac_object_callback,
            disable_evaluator_output=self.disable_evaluator_output,
            smac_scenario_args=self.smac_scenario_args,
            logging_config=self.logging_config,
            metadata_directory=self.metadata_directory,
            metrics=[self.metric] if isinstance(self.metric, Scorer) else self.metric,
            scoring_functions=self.scoring_functions,
            get_trials_callback=self.get_trials_callback,
            dataset_compression=self.dataset_compression,
            allow_string_features=self.allow_string_features,
            disable_progress_bar=self.disable_progress_bar,
        )

        return automl

    def fit(self, **kwargs):

        # Automatically set the cutoff time per task
        if self.per_run_time_limit is None:
            self.per_run_time_limit = self._n_jobs * self.time_left_for_this_task // 10

        if self.automl_ is None:
            self.automl_ = self.build_automl()
        self.automl_.fit(load_models=self.load_models, **kwargs)

        return self

    def fit_pipeline(
        self,
        X: SUPPORTED_FEAT_TYPES,
        y: Union[SUPPORTED_TARGET_TYPES, spmatrix],
        config: Union[Configuration, Dict[str, Union[str, float, int]]],
        dataset_name: Optional[str] = None,
        X_test: Optional[SUPPORTED_FEAT_TYPES] = None,
        y_test: Optional[Union[SUPPORTED_TARGET_TYPES, spmatrix]] = None,
        feat_type: Optional[List[str]] = None,
        *args,
        **kwargs: Dict,
    ) -> Tuple[Optional[BasePipeline], RunInfo, RunValue]:
        """Fits and individual pipeline configuration and returns
        the result to the user.

        The Estimator constraints are honored, for example the resampling
        strategy, or memory constraints, unless directly provided to the method.
        By default, this method supports the same signature as fit(), and any extra
        arguments are redirected to the TAE evaluation function, which allows for
        further customization while building a pipeline.

        Any additional argument provided is directly passed to the
        worker exercising the run.

        Parameters
        ----------
        X: array-like, shape = (n_samples, n_features)
            The features used for training
        y: array-like
            The labels used for training
        X_test: Optionalarray-like, shape = (n_samples, n_features)
            If provided, the testing performance will be tracked on this features.
        y_test: array-like
            If provided, the testing performance will be tracked on this labels
        config: Union[Configuration,  Dict[str, Union[str, float, int]]]
            A configuration object used to define the pipeline steps.
            If a dict is passed, a configuration is created based on this dict.
        dataset_name: Optional[str]
            Name that will be used to tag the Auto-Sklearn run and identify the
            Auto-Sklearn run
        feat_type : list, optional (default=None)
            List of str of `len(X.shape[1])` describing the attribute type.
            Possible types are `Categorical` and `Numerical`. `Categorical`
            attributes will be automatically One-Hot encoded. The values
            used for a categorical attribute must be integers, obtained for
            example by `sklearn.preprocessing.LabelEncoder
            <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html>`_.

        Returns
        -------
        pipeline: Optional[BasePipeline]
            The fitted pipeline. In case of failure while fitting the pipeline,
            a None is returned.
        run_info: RunInFo
            A named tuple that contains the configuration launched
        run_value: RunValue
            A named tuple that contains the result of the run
        """
        if self.automl_ is None:
            self.automl_ = self.build_automl()
        return self.automl_.fit_pipeline(
            X=X,
            y=y,
            dataset_name=dataset_name,
            config=config,
            feat_type=feat_type,
            X_test=X_test,
            y_test=y_test,
            *args,
            **kwargs,
        )

    def fit_ensemble(
        self,
        y,
        task: int = None,
        precision: Literal[16, 21, 64] = 32,
        dataset_name: Optional[str] = None,
        ensemble_size: int | None = None,
        ensemble_kwargs: Optional[Dict[str, Any]] = None,
        ensemble_nbest: Optional[int] = None,
        ensemble_class: Type[AbstractEnsemble] | Literal["default"] | None = "default",
        metric: Scorer | Sequence[Scorer] | None = None,
    ):
        """Fit an ensemble to models trained during an optimization process.

        All parameters are ``None`` by default. If no other value is given,
        the default values which were set in a call to ``fit()`` are used.

        Parameters
        ----------
        y : array-like
            Target values.

        task : int
            A constant from the module ``autosklearn.constants``. Determines
            the task type (binary classification, multiclass classification,
            multilabel classification or regression).

        precision : int
            Numeric precision used when loading ensemble data. Can be either
            ``16``, ``32`` or ``64``.

        dataset_name : str
            Name of the current data set.

        ensemble_size : int, optional
            Number of models added to the ensemble built by *Ensemble
            selection from libraries of models*. Models are drawn with
            replacement. If set to ``0`` no ensemble is fit.

            Deprecated - will be removed in Auto-sklearn 0.16. Please pass
            this argument via ``ensemble_kwargs={"ensemble_size": int}``
            if you want to change the ensemble size for ensemble selection.

        ensemble_kwargs : Dict, optional
            Keyword arguments that are passed to the ensemble class upon
            initialization.

        ensemble_nbest : int
            Only consider the ``ensemble_nbest`` models when building an
            ensemble. This is inspired by a concept called library pruning
            introduced in `Getting Most out of Ensemble Selection`. This
            is independent of the ``ensemble_class`` argument and this
            pruning step is done prior to constructing an ensemble.

        ensemble_class : Type[AbstractEnsemble] | "default", optional (default="default")
            Class implementing the post-hoc ensemble algorithm. Set to
            ``None`` to disable ensemble building or use class:`SingleBest`
            to obtain only use the single best model instead of an
            ensemble.

            If set to "default" it will use :class:`EnsembleSelection` for
            single-objective problems and :class:`MultiObjectiveDummyEnsemble`
            for multi-objective problems.

        metric: Scorer | Sequence[Scorer] | None = None
            A metric or list of metrics to score the ensemble with

        Returns
        -------
        self
        """  # noqa: E501

        if ensemble_class == "default":
            # Things are actually a little more nuanced here:
            # * If they passed `metric=None` at init, we would infer this in automl
            #   during `fit` and store it in the automl instance.
            # * If they passed a `metric` in init and left it `None` here, this would
            #   also be in the automl instance
            # => We can use self.automl_ as ground truth for metric if no metrics passed
            #   and we have one created
            if metric is None and self.automl_ is not None and self.automl_._metrics:
                metric = self.automl_._metrics

            ensemble_class = self._resolve_ensemble_class(metric)

        self.ensemble_class = ensemble_class

        # User specified `ensemble_size` explicitly, warn them about deprecation
        if ensemble_size is not None:
            # Keep consistent behaviour
            message = (
                "`ensemble_size` has been deprecated, please use `ensemble_kwargs = "
                "{'ensemble_size': %d}`. Inserting `ensemble_size` into "
                "`ensemble_kwargs` for now. `ensemble_size` will be removed in "
                "auto-sklearn 0.16."
            ) % ensemble_size
            if ensemble_class == EnsembleSelection:
                if ensemble_kwargs is None:
                    ensemble_kwargs = {"ensemble_size": ensemble_size}
                    warnings.warn(message, DeprecationWarning, stacklevel=2)
                elif "ensemble_size" not in ensemble_kwargs:
                    ensemble_kwargs["ensemble_size"] = ensemble_size
                    warnings.warn(message, DeprecationWarning, stacklevel=2)
                else:
                    warnings.warn(
                        "Deprecated argument `ensemble_size` is both provided "
                        "as an argument to the constructor and passed inside "
                        "`ensemble_kwargs`. Will ignore the argument and use "
                        "the value given in `ensemble_kwargs` (%d). `ensemble_size` "
                        "will be removed in auto-sklearn 0.16."
                        % ensemble_kwargs["ensemble_size"],
                        DeprecationWarning,
                        stacklevel=2,
                    )
            else:
                warnings.warn(
                    "`ensemble_size` has been deprecated, please use "
                    "`ensemble_kwargs = {'ensemble_size': %d} if this "
                    "was intended. Ignoring `ensemble_size` because "
                    "`ensemble_class` != EnsembleSelection. "
                    "`ensemble_size` will be removed in auto-sklearn 0.16."
                    % ensemble_size,
                    DeprecationWarning,
                    stacklevel=2,
                )

        if self.automl_ is None:
            # Build a dummy automl object to call fit_ensemble
            # The ensemble size is honored in the .automl_.fit_ensemble
            # call
            self.automl_ = self.build_automl()
        self.automl_.fit_ensemble(
            y=y,
            task=task,
            precision=precision,
            dataset_name=dataset_name,
            ensemble_nbest=ensemble_nbest,
            ensemble_class=ensemble_class,
            ensemble_kwargs=ensemble_kwargs,
            metrics=metric,
        )
        return self

    def _resolve_ensemble_class(
        self,
        metric: Scorer | Sequence[Scorer] | None,
    ) -> type[AbstractEnsemble]:
        return (
            EnsembleSelection
            if metric is None or isinstance(metric, Scorer) or len(metric) == 1
            else MultiObjectiveDummyEnsemble
        )

    def refit(self, X, y):
        """Refit all models found with fit to new data.

        Necessary when using cross-validation. During training, auto-sklearn
        fits each model k times on the dataset, but does not keep any trained
        model and can therefore not be used to predict for new data points.
        This methods fits all models found during a call to fit on the data
        given. This method may also be used together with holdout to avoid
        only using 66% of the training data to fit the final model.

        Parameters
        ----------

        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The training input samples.

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            The targets.

        Returns
        -------

        self

        """
        self.automl_.refit(X, y)
        return self

    def predict(self, X, batch_size=None, n_jobs=1):
        return self.automl_.predict(X, batch_size=batch_size, n_jobs=n_jobs)

    def predict_proba(self, X, batch_size=None, n_jobs=1):
        return self.automl_.predict_proba(X, batch_size=batch_size, n_jobs=n_jobs)

    def score(self, X, y):
        return self.automl_.score(X, y)

    def show_models(self):
        """Returns a dictionary containing dictionaries of ensemble models.

        Each model in the ensemble can be accessed by giving its ``model_id`` as key.

        A model dictionary contains the following:

        * ``"model_id"`` - The id given to a model by ``autosklearn``.

        * ``"rank"`` - The rank of the model based on it's ``"cost"``.

        * ``"cost"`` - The loss of the model on the validation set.

        * ``"ensemble_weight"`` - The weight given to the model in the ensemble.

        * ``"voting_model"`` - The ``cv_voting_ensemble`` model (for 'cv' resampling).

        * ``"estimators"`` - List of models (dicts) in ``cv_voting_ensemble``
            ('cv' resampling).

        * ``"data_preprocessor"`` - The preprocessor used on the data.

        * ``"balancing"`` - The balancing used on the data (for classification).

        * ``"feature_preprocessor"`` - The preprocessor for features types.

        * ``"classifier"`` / ``"regressor"``
          - The autosklearn wrapped classifier or regressor.

        * ``"sklearn_classifier"`` or ``"sklearn_regressor"``
          - The sklearn classifier or regressor.

        **Example**

        .. code-block:: python

            import sklearn.datasets
            import sklearn.metrics
            import autosklearn.regression

            X, y = sklearn.datasets.load_diabetes(return_X_y=True)

            automl = autosklearn.regression.AutoSklearnRegressor(
                time_left_for_this_task=120
                )
            automl.fit(X_train, y_train, dataset_name='diabetes')

            ensemble_dict = automl.show_models()
            print(ensemble_dict)

        Output:

        .. code-block:: text

            {
                25: {'model_id': 25.0,
                     'rank': 1,
                     'cost': 0.43667876507897496,
                     'ensemble_weight': 0.38,
                     'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing....>,
                     'feature_preprocessor': <autosklearn.pipeline.components....>,
                     'regressor': <autosklearn.pipeline.components.regression....>,
                     'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654,...)
                    },
                6: {'model_id': 6.0,
                    'rank': 2,
                    'cost': 0.4550418898836528,
                    'ensemble_weight': 0.3,
                    'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing....>,
                    'feature_preprocessor': <autosklearn.pipeline.components....>,
                    'regressor': <autosklearn.pipeline.components.regression....>,
                    'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788,...)
                    }...
            }

        Returns
        -------
        Dict(int, Any) : dictionary of length = number of models in the ensemble
            A dictionary of models in the ensemble, where ``model_id`` is the key.

        """  # noqa: E501

        return self.automl_.show_models()

    def get_models_with_weights(self):
        """Return a list of the final ensemble found by auto-sklearn.

        Returns
        -------
        [(weight_1, model_1), ..., (weight_n, model_n)]

        """
        return self.automl_.get_models_with_weights()

    @property
    def performance_over_time_(self):
        return self.automl_.performance_over_time_

    @property
    def cv_results_(self):
        return self.automl_.cv_results_

    @property
    def trajectory_(self):
        return self.automl_.trajectory_

    @property
    def fANOVA_input_(self):
        return self.automl_.fANOVA_input_

    def sprint_statistics(self):
        """Return the following statistics of the training result:

        - dataset name
        - metric used
        - best validation score
        - number of target algorithm runs
        - number of successful target algorithm runs
        - number of crashed target algorithm runs
        - number of target algorithm runs that exceeded the memory limit
        - number of target algorithm runs that exceeded the time limit

        Returns
        -------
        str
        """
        return self.automl_.sprint_statistics()

    def leaderboard(
        self,
        detailed: bool = False,
        ensemble_only: bool = True,
        top_k: Union[int, Literal["all"]] = "all",
        sort_by: str = "cost",
        sort_order: Literal["auto", "ascending", "descending"] = "auto",
        include: Optional[Union[str, Iterable[str]]] = None,
    ) -> pd.DataFrame:
        """Returns a pandas table of results for all evaluated models.

        Gives an overview of all models trained during the search process along
        with various statistics about their training.

        The available statistics are:

        **Simple**:

        * ``"model_id"`` - The id given to a model by ``autosklearn``.
        * ``"rank"`` - The rank of the model based on it's ``"cost"``.
        * ``"ensemble_weight"`` - The weight given to the model in the ensemble.
        * ``"type"`` - The type of classifier/regressor used.
        * ``"cost"`` - The loss of the model on the validation set.
        * ``"duration"`` - Length of time the model was optimized for.

        **Detailed**:
        The detailed view includes all of the simple statistics along with the
        following.

        * ``"config_id"`` - The id used by SMAC for optimization.
        * ``"budget"`` - How much budget was allocated to this model.
        * ``"status"`` - The return status of training the model with SMAC.
        * ``"train_loss"`` - The loss of the model on the training set.
        * ``"balancing_strategy"`` - The balancing strategy used for data preprocessing.
        * ``"start_time"`` - Time the model began being optimized
        * ``"end_time"`` - Time the model ended being optimized
        * ``"data_preprocessors"`` - The preprocessors used on the data
        * ``"feature_preprocessors"`` - The preprocessors for features types

        Parameters
        ----------
        detailed: bool = False
            Whether to give detailed information or just a simple overview.

        ensemble_only: bool = True
            Whether to view only models included in the ensemble or all models
            trained.

        top_k: int or "all" = "all"
            How many models to display.

        sort_by: str = 'cost'
            What column to sort by. If that column is not present, the
            sorting defaults to the ``"model_id"`` index column.

            Defaults to the metric optimized. Sort by the first objective
            in case of a multi-objective optimization problem

        sort_order: "auto" or "ascending" or "descending" = "auto"
            Which sort order to apply to the ``sort_by`` column. If left
            as ``"auto"``, it will sort by a sensible default where "better" is
            on top, otherwise defaulting to the pandas default for
            `DataFrame.sort_values`_ if there is no obvious "better".

            .. _DataFrame.sort_values: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html

        include: Optional[str or Iterable[str]]
            Items to include, other items not specified will be excluded.
            The exception is the ``"model_id"`` index column which is always included.

            If left as ``None``, it will resort back to using the ``detailed``
            param to decide the columns to include.

        Returns
        -------
        pd.DataFrame
            A dataframe of statistics for the models, ordered by ``sort_by``.

        """  # noqa (links are too long)
        # TODO validate that `self` is fitted. This is required for
        #      self.ensemble_ to get the identifiers of models it will generate
        #      weights for.
        num_metrics = (
            1
            if self.metric is None or isinstance(self.metric, Scorer)
            else len(self.metric)
        )
        column_types = AutoSklearnEstimator._leaderboard_columns(num_metrics)
        if num_metrics == 1:
            multi_objective_cost_names = []
        else:
            multi_objective_cost_names = [f"cost_{i}" for i in range(num_metrics)]

        # Validation of top_k
        if (
            not (isinstance(top_k, str) or isinstance(top_k, int))
            or (isinstance(top_k, str) and top_k != "all")
            or (isinstance(top_k, int) and top_k <= 0)
        ):
            raise ValueError(
                f"top_k={top_k} must be a positive integer or pass"
                " `top_k`='all' to view results for all models"
            )

        # Validate columns to include
        if isinstance(include, str):
            include = [include]

        if include == ["model_id"]:
            raise ValueError("Must provide more than just `model_id`")

        if include is not None:
            columns = [*include]

            # 'model_id' should always be present as it is the unique index
            # used for pandas
            if "model_id" not in columns:
                columns.append("model_id")

            invalid_include_items = set(columns) - set(column_types["all"])
            if len(invalid_include_items) != 0:
                raise ValueError(
                    f"Values {invalid_include_items} are not known"
                    f" columns to include, must be contained in "
                    f"{column_types['all']}"
                )
        elif detailed:
            columns = column_types["all"]
        else:
            columns = column_types["simple"]

        # Validation of sorting
        if sort_by == "cost":
            sort_by_cost = True
            if num_metrics == 1:
                sort_by = ["cost", "model_id"]
            else:
                sort_by = multi_objective_cost_names + ["model_id"]
        else:
            sort_by_cost = False
            if isinstance(sort_by, str):
                if sort_by not in column_types["all"]:
                    raise ValueError(
                        f"sort_by='{sort_by}' must be one of included "
                        f"columns {set(column_types['all'])}"
                    )
            elif len(set(sort_by) - set(column_types["all"])) > 0:
                too_much = set(sort_by) - set(column_types["all"])
                raise ValueError(
                    f"sort_by='{too_much}' must be in the included columns "
                    f"{set(column_types['all'])}"
                )

        valid_sort_orders = ["auto", "ascending", "descending"]
        if not (isinstance(sort_order, str) and sort_order in valid_sort_orders):
            raise ValueError(
                f"`sort_order` = {sort_order} must be a str in " f"{valid_sort_orders}"
            )

        # To get all the models that were optmized, we collect what we can from
        # runhistory first.
        def additional_info_has_key(rv, key):
            return rv.additional_info and key in rv.additional_info

        model_runs = {}
        for run_key, run_val in self.automl_.runhistory_.data.items():
            if not additional_info_has_key(run_val, "num_run"):
                continue
            else:
                model_key = run_val.additional_info["num_run"]
                model_run = {
                    "model_id": run_val.additional_info["num_run"],
                    "seed": run_key.seed,
                    "budget": run_key.budget,
                    "duration": run_val.time,
                    "config_id": run_key.config_id,
                    "start_time": run_val.starttime,
                    "end_time": run_val.endtime,
                    "status": str(run_val.status),
                    "train_loss": run_val.additional_info["train_loss"]
                    if additional_info_has_key(run_val, "train_loss")
                    else None,
                    "config_origin": run_val.additional_info["configuration_origin"]
                    if additional_info_has_key(run_val, "configuration_origin")
                    else None,
                }
                if num_metrics == 1:
                    model_run["cost"] = run_val.cost
                else:
                    for cost_idx, cost in enumerate(run_val.cost):
                        model_run[f"cost_{cost_idx}"] = cost
                model_runs[model_key] = model_run

        # Next we get some info about the model itself
        model_class_strings = {
            AutoMLClassifier: "classifier",
            AutoMLRegressor: "regressor",
        }
        model_type = model_class_strings.get(self._get_automl_class(), None)
        if model_type is None:
            raise RuntimeError(f"Unknown `automl_class` {self._get_automl_class()}")

        # A dict mapping model ids to their configurations
        configurations = self.automl_.runhistory_.ids_config

        for model_id, run_info in model_runs.items():
            config_id = run_info["config_id"]
            run_config = configurations[config_id]._values

            run_info.update(
                {
                    "balancing_strategy": run_config.get("balancing:strategy", None),
                    "type": run_config[f"{model_type}:__choice__"],
                    "data_preprocessors": [
                        value
                        for key, value in run_config.items()
                        if "data_preprocessing" in key and "__choice__" in key
                    ],
                    "feature_preprocessors": [
                        value
                        for key, value in run_config.items()
                        if "feature_preprocessor" in key and "__choice__" in key
                    ],
                }
            )

        # Get the models ensemble weight if it has one
        for (
            _,
            model_id,
            _,
        ), weight in self.automl_.ensemble_.get_identifiers_with_weights():

            # We had issues where the model's in the ensembles are not in the runhistory
            # collected. I have no clue why this is but to prevent failures, we fill
            # the values with NaN
            if model_id not in model_runs:
                model_run = {
                    "model_id": model_id,
                    "seed": pd.NA,
                    "budget": pd.NA,
                    "duration": pd.NA,
                    "config_id": pd.NA,
                    "start_time": pd.NA,
                    "end_time": pd.NA,
                    "status": pd.NA,
                    "train_loss": pd.NA,
                    "config_origin": pd.NA,
                    "type": pd.NA,
                }
                if num_metrics == 1:
                    model_run["cost"] = pd.NA
                else:
                    for cost_idx in range(num_metrics):
                        model_run[f"cost_{cost_idx}"] = pd.NA
                model_runs[model_id] = model_run

            model_runs[model_id]["ensemble_weight"] = weight

        # Filter out non-ensemble members if needed, else fill in a default
        # value of 0 if it's missing
        if ensemble_only:
            model_runs = {
                model_id: info
                for model_id, info in model_runs.items()
                if ("ensemble_weight" in info and info["ensemble_weight"] > 0)
            }
        else:
            for model_id, info in model_runs.items():
                if "ensemble_weight" not in info:
                    info["ensemble_weight"] = 0

        # `rank` relies on `cost` so we include `cost`
        # We drop it later if it's not requested
        if "rank" in columns:
            if num_metrics == 1 and "cost" not in columns:
                columns = [*columns, "cost"]
            elif num_metrics > 1 and any(
                cost_name not in columns for cost_name in multi_objective_cost_names
            ):
                columns = columns + list(multi_objective_cost_names)

        # Finally, convert into a tabular format by converting the dict into
        # column wise orientation.
        dataframe = pd.DataFrame(
            {
                col: [run_info[col] for run_info in model_runs.values()]
                for col in columns
                if col != "rank"
            }
        )

        # Give it an index, even if not in the `include`
        dataframe.set_index("model_id", inplace=True)

        # Add the `rank` column if needed
        # requested by the user
        if "rank" in columns:
            if num_metrics == 1:
                dataframe.sort_values(by="cost", ascending=True, inplace=True)
            else:
                dataframe.sort_values(by="cost_0", ascending=True, inplace=True)
            dataframe.insert(
                column="rank",
                value=range(1, len(dataframe) + 1),
                loc=list(columns).index("rank") - 1,
            )  # account for `model_id`

        # Decide on the sort order depending on what it gets sorted by
        descending_columns = ["ensemble_weight", "duration"]
        if sort_order == "auto":
            ascending_param = [
                False if sby in descending_columns else True for sby in sort_by
            ]
        else:
            ascending_param = False if sort_order == "descending" else True

        # Sort by the given column name, defaulting to 'model_id' if not present
        if (
            (not sort_by_cost and len(set(sort_by) - set(dataframe.columns)) > 0)
            or (sort_by_cost and "cost" not in dataframe.columns)
            or (
                sort_by_cost
                and any(
                    cost_name not in dataframe.columns
                    for cost_name in multi_objective_cost_names
                )
            )
        ):
            self.automl_._logger.warning(
                f"sort_by = '{sort_by}' was not present"
                ", defaulting to sort on the index "
                "'model_id'"
            )
            sort_by = "model_id"
            sort_by_cost = False
            ascending_param = True

        # Single objective
        if sort_by_cost:
            dataframe.sort_values(
                by=sort_by, ascending=[True] * len(sort_by), inplace=True
            )
        else:
            dataframe.sort_values(by=sort_by, ascending=ascending_param, inplace=True)

        if num_metrics == 1:
            if "cost" not in columns and "cost" in dataframe.columns:
                dataframe.drop("cost", inplace=True)
        else:
            for cost_name in multi_objective_cost_names:
                if cost_name not in columns and cost_name in dataframe.columns:
                    dataframe.drop(cost_name, inplace=True)

        # Lastly, just grab the top_k
        if top_k == "all" or top_k >= len(dataframe):
            top_k = len(dataframe)

        dataframe = dataframe.head(top_k)

        return dataframe

    @staticmethod
    def _leaderboard_columns(
        num_metrics: int,
    ) -> Dict[Literal["all", "simple", "detailed"], List[str]]:
        if num_metrics == 1:
            cost_list = ["cost"]
        else:
            cost_list = [f"cost_{i}" for i in range(num_metrics)]
        all = (
            [
                "model_id",
                "rank",
                "ensemble_weight",
                "type",
            ]
            + cost_list
            + [
                "duration",
                "config_id",
                "train_loss",
                "seed",
                "start_time",
                "end_time",
                "budget",
                "status",
                "data_preprocessors",
                "feature_preprocessors",
                "balancing_strategy",
                "config_origin",
            ]
        )
        simple = (
            ["model_id", "rank", "ensemble_weight", "type"] + cost_list + ["duration"]
        )
        detailed = all
        return {"all": all, "detailed": detailed, "simple": simple}

    def _get_automl_class(self):
        raise NotImplementedError()

    def get_configuration_space(
        self,
        X: SUPPORTED_FEAT_TYPES,
        y: Union[SUPPORTED_TARGET_TYPES, spmatrix],
        X_test: Optional[SUPPORTED_FEAT_TYPES] = None,
        y_test: Optional[Union[SUPPORTED_TARGET_TYPES, spmatrix]] = None,
        dataset_name: Optional[str] = None,
        feat_type: Optional[List[str]] = None,
    ) -> ConfigurationSpace:
        """
        Returns the Configuration Space object, from which Auto-Sklearn
        will sample configurations and build pipelines.

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            Array with the training features, used to get characteristics like
            data sparsity
        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            Array with the problem labels
        X_test : array-like or sparse matrix of shape = [n_samples, n_features]
            Array with features used for performance estimation
        y_test : array-like, shape = [n_samples] or [n_samples, n_outputs]
            Array with the problem labels for the testing split
        dataset_name: Optional[str]
            A string to tag the Auto-Sklearn run
        """
        if self.automl_ is None:
            self.automl_ = self.build_automl()

        return (
            self.automl_.fit(
                X,
                y,
                X_test=X_test,
                y_test=y_test,
                dataset_name=dataset_name,
                feat_type=feat_type,
                only_return_configuration_space=True,
            )
            if self.automl_.configuration_space is None
            else self.automl_.configuration_space
        )

    def get_pareto_set(self) -> Sequence[VotingClassifier | VotingRegressor]:
        return self.automl_._load_pareto_set()


[docs]class AutoSklearnClassifier(AutoSklearnEstimator, ClassifierMixin): """This class implements the classification task."""
[docs] def fit(self, X, y, X_test=None, y_test=None, feat_type=None, dataset_name=None): """Fit *auto-sklearn* to given training set (X, y). Fit both optimizes the machine learning models and builds an ensemble out of them. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target classes. X_test : array-like or sparse matrix of shape = [n_samples, n_features] Test data input samples. Will be used to save test predictions for all models. This allows to evaluate the performance of Auto-sklearn over time. y_test : array-like, shape = [n_samples] or [n_samples, n_outputs] Test data target classes. Will be used to calculate the test error of all models. This allows to evaluate the performance of Auto-sklearn over time. feat_type : list, optional (default=None) List of str of `len(X.shape[1])` describing the attribute type. Possible types are `Categorical` and `Numerical`. `Categorical` attributes will be automatically One-Hot encoded. The values used for a categorical attribute must be integers, obtained for example by `sklearn.preprocessing.LabelEncoder <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html>`_. dataset_name : str, optional (default=None) Create nicer output. If None, a string will be determined by the md5 hash of the dataset. Returns ------- self """ # AutoSklearn does not handle sparse y for now y = convert_if_sparse(y) # Before running anything else, first check that the # type of data is compatible with auto-sklearn. Legal target # types are: binary, multiclass, multilabel-indicator. target_type = type_of_target(y) supported_types = ["binary", "multiclass", "multilabel-indicator"] if target_type not in supported_types: raise ValueError( "Classification with data of type {} is " "not supported. Supported types are {}. " "You can find more information about scikit-learn " "data types in: " "https://scikit-learn.org/stable/modules/multiclass.html" "".format(target_type, supported_types) ) # remember target type for using in predict_proba later. self.target_type = target_type super().fit( X=X, y=y, X_test=X_test, y_test=y_test, feat_type=feat_type, dataset_name=dataset_name, ) # After fit, a classifier is expected to define classes_ # A list of class labels known to the classifier, mapping each label # to a numerical index used in the model representation our output. self.classes_ = self.automl_.InputValidator.target_validator.classes_ return self
[docs] def predict(self, X, batch_size=None, n_jobs=1): """Predict classes for X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] Returns ------- y : array of shape = [n_samples] or [n_samples, n_labels] The predicted classes. """ return super().predict(X, batch_size=batch_size, n_jobs=n_jobs)
[docs] def predict_proba(self, X, batch_size=None, n_jobs=1): """Predict probabilities of classes for all samples X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] batch_size : int (optional) Number of data points to predict for (predicts all points at once if ``None``. n_jobs : int Returns ------- y : array of shape = [n_samples, n_classes] or [n_samples, n_labels] The predicted class probabilities. """ pred_proba = super().predict_proba(X, batch_size=batch_size, n_jobs=n_jobs) # Check if all probabilities sum up to 1. # Assert only if target type is not multilabel-indicator. if self.target_type not in ["multilabel-indicator"]: assert np.allclose( np.sum(pred_proba, axis=1), np.ones_like(pred_proba[:, 0]) ), "prediction probability does not sum up to 1!" # Check that all probability values lie between 0 and 1. assert (pred_proba >= 0).all() and ( pred_proba <= 1 ).all(), "found prediction probability value outside of [0, 1]!" return pred_proba
def _get_automl_class(self): return AutoMLClassifier
[docs]class AutoSklearnRegressor(AutoSklearnEstimator, RegressorMixin): """ This class implements the regression task. """
[docs] def fit(self, X, y, X_test=None, y_test=None, feat_type=None, dataset_name=None): """Fit *Auto-sklearn* to given training set (X, y). Fit both optimizes the machine learning models and builds an ensemble out of them. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] or [n_samples, n_targets] The regression target. X_test : array-like or sparse matrix of shape = [n_samples, n_features] Test data input samples. Will be used to save test predictions for all models. This allows to evaluate the performance of Auto-sklearn over time. y_test : array-like, shape = [n_samples] or [n_samples, n_targets] The regression target. Will be used to calculate the test error of all models. This allows to evaluate the performance of Auto-sklearn over time. feat_type : list, optional (default=None) List of str of `len(X.shape[1])` describing the attribute type. Possible types are `Categorical` and `Numerical`. `Categorical` attributes will be automatically One-Hot encoded. dataset_name : str, optional (default=None) Create nicer output. If None, a string will be determined by the md5 hash of the dataset. Returns ------- self """ # Before running anything else, first check that the # type of data is compatible with auto-sklearn. Legal target # types are: continuous, continuous-multioutput, and the special cases: # multiclass : because [3.0, 1.0, 5.0] is considered as multiclass # binary: because [1.0, 0.0] is considered multiclass # AutoSklearn does not handle sparse y for now y = convert_if_sparse(y) target_type = type_of_target(y) supported_types = [ "continuous", "binary", "multiclass", "continuous-multioutput", ] if target_type not in supported_types: raise ValueError( "Regression with data of type {} is " "not supported. Supported types are {}. " "You can find more information about scikit-learn " "data types in: " "https://scikit-learn.org/stable/modules/multiclass.html" "".format(target_type, supported_types) ) # Fit is supposed to be idempotent! # But not if we use share_mode. super().fit( X=X, y=y, X_test=X_test, y_test=y_test, feat_type=feat_type, dataset_name=dataset_name, ) return self
[docs] def predict(self, X, batch_size=None, n_jobs=1): """Predict regression target for X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ return super().predict(X, batch_size=batch_size, n_jobs=n_jobs)
def _get_automl_class(self): return AutoMLRegressor