scenario : Scenario object.
considered_states : list[StatusType], defaults to [StatusType.SUCCESS, StatusType.CRASHED, StatusType.MEMORYOUT] # noqa: E501
Trials with the passed states are considered.
lower_budget_states : list[StatusType], defaults to []
Additionally consider all trials with these states for budget < current budget.
scale_percentage : int, defaults to 5
Scaled y-transformation use a percentile to estimate distance to optimum. Only used in some sub-classes.
seed : int | None, defaults to none
def__init__(self,scenario:Scenario,considered_states:list[StatusType]=None,lower_budget_states:list[StatusType]=None,scale_percentage:int=5,seed:int|None=None,)->None:ifconsidered_statesisNone:considered_states=[StatusType.SUCCESS,StatusType.CRASHED,StatusType.MEMORYOUT,]ifseedisNone:seed=scenario.seedself._seed=seedself._rng=np.random.RandomState(seed)self._scale_percentage=scale_percentageself._n_objectives=scenario.count_objectives()self._algorithm_walltime_limit=scenario.trial_walltime_limitself._lower_budget_states=lower_budget_statesiflower_budget_statesisnotNoneelse[]self._considered_states=considered_statesself._instances=scenario.instancesself._instance_features=scenario.instance_featuresself._n_features=scenario.count_instance_features()self._n_params=len(list(scenario.configspace.values()))ifself._instancesisnotNoneandself._n_features==0:logger.warning("We strongly encourage to use instance features when using instances.","If no instance features are passed, the runhistory encoder can not distinguish between different ""instances and therefore returns the same data points with different values, all of which are ""used to train the surrogate model.\n""Consider using instance indices as features.",)# Learned statisticsself._min_y=np.array([np.nan]*self._n_objectives)self._max_y=np.array([np.nan]*self._n_objectives)self._percentile=np.array([np.nan]*self._n_objectives)self._multi_objective_algorithm:AbstractMultiObjectiveAlgorithm|None=Noneself._runhistory:RunHistory|None=None
defget_configurations(self,budget_subset:list|None=None,)->np.ndarray:"""Returns vector representation of the configurations. Warning ------- Instance features are not appended and cost values are not taken into account. Parameters ---------- budget_subset : list[int|float] | None, defaults to none List of budgets to consider. Returns ------- configs_array : np.ndarray """s_trials=self._get_considered_trials(budget_subset)s_config_ids=set(s_trial.config_idfors_trialins_trials)t_trials=self._get_timeout_trials(budget_subset)t_config_ids=set(t_trial.config_idfort_trialint_trials)config_ids=s_config_ids|t_config_idsconfigurations=[self.runhistory._ids_config[config_id]forconfig_idinconfig_ids]configs_array=convert_configurations_to_array(configurations)returnconfigs_array
deftransform(self,budget_subset:list|None=None,)->tuple[np.ndarray,np.ndarray]:"""Returns a vector representation of the RunHistory. Parameters ---------- budget_subset : list | None, defaults to none List of budgets to consider. Returns ------- X : np.ndarray Configuration vector and instance features. Y : np.ndarray Cost values. """logger.debug("Transforming RunHistory into X, y format...")considered_trials=self._get_considered_trials(budget_subset)X,Y=self._build_matrix(trials=considered_trials,store_statistics=True)# Get real TIMEOUT runstimeout_trials=self._get_timeout_trials(budget_subset)# Use penalization (e.g. PAR10) for EPM trainingstore_statistics=Trueifnp.any(np.isnan(self._min_y))elseFalsetX,tY=self._build_matrix(trials=timeout_trials,store_statistics=store_statistics)# If we don't have successful runs, we have to return all timeout runsifnotconsidered_trials:returntX,tY# If we do not impute, we also return TIMEOUT dataX=np.vstack((X,tX))Y=np.concatenate((Y,tY))logger.debug("Converted %d observations."%(X.shape[0]))returnX,Y