Note
Go to the end to download the full example code. or to run this example in your browser via Binder
Stochastic Gradient Descent On Multiple Datasets¶
Example for optimizing a Multi-Layer Perceptron (MLP) across multiple (dataset) instances.
Alternative to budgets, here wlog. we consider instances as a fidelity type. An instance represents a specific scenario/condition (e.g. different datasets, subsets, transformations) for the algorithm to run. SMAC then returns the algorithm that had the best performance across all the instances. In this case, an instance is a binary dataset i.e., digit-2 vs digit-3.
If we use instance as our fidelity, we need to initialize scenario with argument instance. In this case the argument budget is no longer required by the target function. But due to the scenario instance argument, the target function now is required to have an instance argument.
[INFO][abstract_initial_design.py:147] Using 40 initial design configurations and 0 additional configurations.
[INFO][successive_halving.py:164] Successive Halving uses budget type INSTANCES with eta 3, min budget 1, and max budget 45.
[INFO][successive_halving.py:323] Number of configs in stage:
[INFO][successive_halving.py:325] --- Bracket 0: [27, 9, 3, 1]
[INFO][successive_halving.py:325] --- Bracket 1: [12, 4, 1]
[INFO][successive_halving.py:325] --- Bracket 2: [6, 2]
[INFO][successive_halving.py:325] --- Bracket 3: [4]
[INFO][successive_halving.py:327] Budgets in stage:
[INFO][successive_halving.py:329] --- Bracket 0: [1.6666666666666665, 5.0, 15.0, 45.0]
[INFO][successive_halving.py:329] --- Bracket 1: [5.0, 15.0, 45.0]
[INFO][successive_halving.py:329] --- Bracket 2: [15.0, 45.0]
[INFO][successive_halving.py:329] --- Bracket 3: [45.0]
[INFO][abstract_intensifier.py:516] Added config 598f51 as new incumbent because there are no incumbents yet.
[INFO][abstract_intensifier.py:595] Added config 6fe1e4 and rejected config 598f51 as incumbent because it is not better than the incumbents on 1 instances:
[INFO][abstract_intensifier.py:595] Added config df442a and rejected config 6fe1e4 as incumbent because it is not better than the incumbents on 1 instances:
[INFO][smbo.py:320] Finished 50 trials.
[INFO][smbo.py:320] Finished 100 trials.
[INFO][smbo.py:320] Finished 150 trials.
[INFO][smbo.py:320] Finished 200 trials.
[INFO][smbo.py:320] Finished 250 trials.
[INFO][smbo.py:320] Finished 300 trials.
[INFO][smbo.py:320] Finished 350 trials.
[INFO][abstract_intensifier.py:595] Added config 4b98e9 and rejected config df442a as incumbent because it is not better than the incumbents on 45 instances:
[INFO][smbo.py:320] Finished 400 trials.
[INFO][abstract_intensifier.py:595] Added config 85083c and rejected config 4b98e9 as incumbent because it is not better than the incumbents on 45 instances:
[INFO][smbo.py:328] Configuration budget is exhausted:
[INFO][smbo.py:329] --- Remaining wallclock time: -0.0499424934387207
[INFO][smbo.py:330] --- Remaining cpu time: inf
[INFO][smbo.py:331] --- Remaining trials: 4556
Default cost: 0.15489347419148672
Incumbent cost: 0.004324883940174601
from __future__ import annotations
import itertools
import warnings
import numpy as np
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Float
from sklearn import datasets
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import StratifiedKFold, cross_val_score
from smac import MultiFidelityFacade as MFFacade
from smac import Scenario
__copyright__ = "Copyright 2021, AutoML.org Freiburg-Hannover"
__license__ = "3-clause BSD"
class DigitsDataset:
def __init__(self) -> None:
self._data = datasets.load_digits()
def get_instances(self) -> list[str]:
"""Create instances from the dataset which include two classes only."""
return [f"{classA}-{classB}" for classA, classB in itertools.combinations(self._data.target_names, 2)]
def get_instance_features(self) -> dict[str, list[int | float]]:
"""Returns the mean and variance of all instances as features."""
features = {}
for instance in self.get_instances():
data, _ = self.get_instance_data(instance)
features[instance] = [np.mean(data), np.var(data)]
return features
def get_instance_data(self, instance: str) -> tuple[np.ndarray, np.ndarray]:
"""Retrieve data from the passed instance."""
# We split the dataset into two classes
classA, classB = instance.split("-")
indices = np.where(np.logical_or(int(classA) == self._data.target, int(classB) == self._data.target))
data = self._data.data[indices]
target = self._data.target[indices]
return data, target
class SGD:
def __init__(self, dataset: DigitsDataset) -> None:
self.dataset = dataset
@property
def configspace(self) -> ConfigurationSpace:
"""Build the configuration space which defines all parameters and their ranges for the SGD classifier."""
cs = ConfigurationSpace()
# We define a few possible parameters for the SGD classifier
alpha = Float("alpha", (0, 1), default=1.0)
l1_ratio = Float("l1_ratio", (0, 1), default=0.5)
learning_rate = Categorical("learning_rate", ["constant", "invscaling", "adaptive"], default="constant")
eta0 = Float("eta0", (0.00001, 1), default=0.1, log=True)
# Add the parameters to configuration space
cs.add([alpha, l1_ratio, learning_rate, eta0])
return cs
def train(self, config: Configuration, instance: str, seed: int = 0) -> float:
"""Creates a SGD classifier based on a configuration and evaluates it on the
digits dataset using cross-validation."""
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
# SGD classifier using given configuration
clf = SGDClassifier(
loss="log_loss",
penalty="elasticnet",
alpha=config["alpha"],
l1_ratio=config["l1_ratio"],
learning_rate=config["learning_rate"],
eta0=config["eta0"],
max_iter=30,
early_stopping=True,
random_state=seed,
)
# get instance
data, target = self.dataset.get_instance_data(instance)
cv = StratifiedKFold(n_splits=4, random_state=seed, shuffle=True) # to make CV splits consistent
scores = cross_val_score(clf, data, target, cv=cv)
return 1 - np.mean(scores)
if __name__ == "__main__":
dataset = DigitsDataset()
model = SGD(dataset)
scenario = Scenario(
model.configspace,
walltime_limit=30, # We want to optimize for 30 seconds
n_trials=5000, # We want to try max 5000 different trials
min_budget=1, # Use min one instance
max_budget=45, # Use max 45 instances (if we have a lot of instances we could constraint it here)
instances=dataset.get_instances(),
instance_features=dataset.get_instance_features(),
)
# Create our SMAC object and pass the scenario and the train method
smac = MFFacade(
scenario,
model.train,
overwrite=True,
)
# Now we start the optimization process
incumbent = smac.optimize()
default_cost = smac.validate(model.configspace.get_default_configuration())
print(f"Default cost: {default_cost}")
incumbent_cost = smac.validate(incumbent)
print(f"Incumbent cost: {incumbent_cost}")
Total running time of the script: (0 minutes 34.267 seconds)