Bases: AbstractMultiObjectiveAlgorithm
        A class to mean-aggregate multi-objective costs to a single cost.
Parameters
scenario : Scenario
objective_weights : list[float] | None, defaults to None
    Weights for an weighted average. Must be of the same length as the number of objectives.
                  
                    Source code in smac/multi_objective/aggregation_strategy.py
                    |  | def __init__(
    self,
    scenario: Scenario,
    objective_weights: list[float] | None = None,
):
    super(MeanAggregationStrategy, self).__init__()
    if objective_weights is not None and scenario.count_objectives() != len(objective_weights):
        raise ValueError("Number of objectives and number of weights must be equal.")
    self._objective_weights = objective_weights
 | 
 
  
    
        Returns the meta data of the created object.
     
 
update_on_iteration_start() -> None
        Update the internal state on start of each SMBO iteration.
            
              Source code in smac/multi_objective/abstract_multi_objective_algorithm.py
              |  | def update_on_iteration_start(self) -> None:
    """Update the internal state on start of each SMBO iteration."""
    pass
 |