White kernel
    
WhiteKernel(
    noise_level: float | tuple[float, ...] = 1.0,
    noise_level_bounds: tuple[float, float]
    | list[tuple[float, float]] = (1e-05, 100000.0),
    operate_on: ndarray | None = None,
    has_conditions: bool = False,
    prior: AbstractPrior | None = None,
)
              Bases: AbstractKernel, WhiteKernel
White kernel implementation.
Source code in smac/model/gaussian_process/kernels/white_kernel.py
                    
property
  
#
hyperparameters: list[Hyperparameter]
Returns a list of all hyperparameter specifications.
property
  
#
    Returns the meta data of the created object. This method calls the get_params method to collect the
parameters of the kernel.
__call__(
    X: ndarray,
    Y: ndarray | None = None,
    eval_gradient: bool = False,
    active: ndarray | None = None,
) -> ndarray | tuple[ndarray, ndarray]
Call the kernel function. Internally, self._call is called, which must be specified by a subclass.
Source code in smac/model/gaussian_process/kernels/base_kernels.py
              
    Get parameters of this kernel.
Parameters#
deep : bool, defaults to True If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns#
params : dict[str, Any] Parameter names mapped to their values.