Specify Number of Trials via a Total Budget in Hyperband#
Expand to copy examples/2_multi_fidelity/3_specify_HB_via_total_budget.py
(top right)
from __future__ import annotations
import numpy as np
from ConfigSpace import Configuration, ConfigurationSpace, Float
from matplotlib import pyplot as plt
from smac import MultiFidelityFacade, RunHistory, Scenario
from smac.intensifier.hyperband_utils import get_n_trials_for_hyperband_multifidelity
__copyright__ = "Copyright 2025, Leibniz University Hanover, Institute of AI"
__license__ = "3-clause BSD"
class QuadraticFunction:
max_budget = 500
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
x = Float("x", (-5, 5), default=-5)
cs.add([x])
return cs
def train(self, config: Configuration, seed: int = 0, budget: float | None = None) -> float:
"""Returns the y value of a quadratic function with a minimum we know to be at x=0."""
x = config["x"]
if budget is None:
multiplier = 1
else:
multiplier = 1 + budget / self.max_budget
return x**2 * multiplier
def plot(runhistory: RunHistory, incumbent: Configuration) -> None:
plt.figure()
# Plot ground truth
x = list(np.linspace(-5, 5, 100))
y = [xi * xi for xi in x]
plt.plot(x, y)
# Plot all trials
for k, v in runhistory.items():
config = runhistory.get_config(k.config_id)
x = config["x"]
y = v.cost # type: ignore
plt.scatter(x, y, c="blue", alpha=0.1, zorder=9999, marker="o")
# Plot incumbent
plt.scatter(incumbent["x"], incumbent["x"] * incumbent["x"], c="red", zorder=10000, marker="x")
plt.show()
if __name__ == "__main__":
model = QuadraticFunction()
min_budget = 10 # minimum budget per trial
max_budget = 500 # maximum budget per trial
eta = 3 # standard HB parameter influencing the number of stages
# Let's calculate how many trials we need to exhaust the total optimization budget (in terms of
# fidelity units)
n_trials = get_n_trials_for_hyperband_multifidelity(
total_budget=10000, # this is the total optimization budget we specify in terms of fidelity units
min_budget=min_budget, # This influences the Hyperband rounds, minimum budget per trial
max_budget=max_budget, # This influences the Hyperband rounds, maximum budget per trial
eta=eta, # This influences the Hyperband rounds
print_summary=True,
)
# Scenario object specifying the optimization "environment"
scenario = Scenario(
model.configspace, deterministic=True, n_trials=n_trials, min_budget=min_budget, max_budget=max_budget
)
# Now we use SMAC to find the best hyperparameters
smac = MultiFidelityFacade(
scenario,
model.train, # We pass the target function here
overwrite=True, # Overrides any previous results that are found that are inconsistent with the meta-data
intensifier=MultiFidelityFacade.get_intensifier(scenario=scenario, eta=eta),
)
incumbent = smac.optimize()
# Get cost of default configuration
default_cost = smac.validate(model.configspace.get_default_configuration())
print(f"Default cost: {default_cost}")
# Let's calculate the cost of the incumbent
incumbent_cost = smac.validate(incumbent)
print(f"Incumbent cost: {incumbent_cost}")
# Let's plot it too
plot(smac.runhistory, incumbent)
Description#
This example uses a dummy function but illustrates how to setup Hyperband if you want to specify a total optimization budget in terms of fidelity units.
In Hyperband, normally SMAC calculates a typical Hyperband round. If the number of trials is not used up by one single round, the next round is started. Instead of specifying the number of trial beforehand, specify the total budget in terms of the fidelity units and let SMAC calculate how many trials that would be.
from __future__ import annotations
import numpy as np
from ConfigSpace import Configuration, ConfigurationSpace, Float
from matplotlib import pyplot as plt
from smac import MultiFidelityFacade, RunHistory, Scenario
from smac.intensifier.hyperband_utils import get_n_trials_for_hyperband_multifidelity
__copyright__ = "Copyright 2025, Leibniz University Hanover, Institute of AI"
__license__ = "3-clause BSD"
class QuadraticFunction:
max_budget = 500
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
x = Float("x", (-5, 5), default=-5)
cs.add([x])
return cs
def train(self, config: Configuration, seed: int = 0, budget: float | None = None) -> float:
"""Returns the y value of a quadratic function with a minimum we know to be at x=0."""
x = config["x"]
if budget is None:
multiplier = 1
else:
multiplier = 1 + budget / self.max_budget
return x**2 * multiplier
def plot(runhistory: RunHistory, incumbent: Configuration) -> None:
plt.figure()
# Plot ground truth
x = list(np.linspace(-5, 5, 100))
y = [xi * xi for xi in x]
plt.plot(x, y)
# Plot all trials
for k, v in runhistory.items():
config = runhistory.get_config(k.config_id)
x = config["x"]
y = v.cost # type: ignore
plt.scatter(x, y, c="blue", alpha=0.1, zorder=9999, marker="o")
# Plot incumbent
plt.scatter(incumbent["x"], incumbent["x"] * incumbent["x"], c="red", zorder=10000, marker="x")
plt.show()
if __name__ == "__main__":
model = QuadraticFunction()
min_budget = 10 # minimum budget per trial
max_budget = 500 # maximum budget per trial
eta = 3 # standard HB parameter influencing the number of stages
# Let's calculate how many trials we need to exhaust the total optimization budget (in terms of
# fidelity units)
n_trials = get_n_trials_for_hyperband_multifidelity(
total_budget=10000, # this is the total optimization budget we specify in terms of fidelity units
min_budget=min_budget, # This influences the Hyperband rounds, minimum budget per trial
max_budget=max_budget, # This influences the Hyperband rounds, maximum budget per trial
eta=eta, # This influences the Hyperband rounds
print_summary=True,
)
# Scenario object specifying the optimization "environment"
scenario = Scenario(
model.configspace, deterministic=True, n_trials=n_trials, min_budget=min_budget, max_budget=max_budget
)
# Now we use SMAC to find the best hyperparameters
smac = MultiFidelityFacade(
scenario,
model.train, # We pass the target function here
overwrite=True, # Overrides any previous results that are found that are inconsistent with the meta-data
intensifier=MultiFidelityFacade.get_intensifier(scenario=scenario, eta=eta),
)
incumbent = smac.optimize()
# Get cost of default configuration
default_cost = smac.validate(model.configspace.get_default_configuration())
print(f"Default cost: {default_cost}")
# Let's calculate the cost of the incumbent
incumbent_cost = smac.validate(incumbent)
print(f"Incumbent cost: {incumbent_cost}")
# Let's plot it too
plot(smac.runhistory, incumbent)