Custom Callback#
Expand to copy examples/1_basics/4_callback.py
(top right)
from __future__ import annotations
from ConfigSpace import Configuration, ConfigurationSpace, Float
import smac
from smac import Callback
from smac import HyperparameterOptimizationFacade as HPOFacade
from smac import Scenario
from smac.runhistory import TrialInfo, TrialValue
__copyright__ = "Copyright 2025, Leibniz University Hanover, Institute of AI"
__license__ = "3-clause BSD"
class Rosenbrock2D:
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
x0 = Float("x0", (-5, 10), default=-3)
x1 = Float("x1", (-5, 10), default=-4)
cs.add([x0, x1])
return cs
def train(self, config: Configuration, seed: int = 0) -> float:
x1 = config["x0"]
x2 = config["x1"]
cost = 100.0 * (x2 - x1**2.0) ** 2.0 + (1 - x1) ** 2.0
return cost
class CustomCallback(Callback):
def __init__(self) -> None:
self.trials_counter = 0
def on_start(self, smbo: smac.main.smbo.SMBO) -> None:
print("Let's start!")
print("")
def on_tell_end(self, smbo: smac.main.smbo.SMBO, info: TrialInfo, value: TrialValue) -> bool | None:
self.trials_counter += 1
if self.trials_counter % 10 == 0:
print(f"Evaluated {self.trials_counter} trials so far.")
incumbent = smbo.intensifier.get_incumbent()
assert incumbent is not None
print(f"Current incumbent: {incumbent.get_dictionary()}")
print(f"Current incumbent value: {smbo.runhistory.get_cost(incumbent)}")
print("")
if self.trials_counter == 50:
print(f"We just triggered to stop the optimization after {smbo.runhistory.finished} finished trials.")
return False
return None
if __name__ == "__main__":
model = Rosenbrock2D()
# Scenario object specifying the optimization "environment"
scenario = Scenario(model.configspace, n_trials=200)
# Now we use SMAC to find the best hyperparameters
HPOFacade(
scenario,
model.train,
overwrite=True,
callbacks=[CustomCallback()],
logging_level=999999,
).optimize()
Description#
Using callbacks is the easieast way to integrate custom code inside the Bayesian optimization loop. In this example, we disable SMAC's default logging option and use the custom callback to log the evaluated trials. Furthermore, we print some stages of the optimization process.
from __future__ import annotations
from ConfigSpace import Configuration, ConfigurationSpace, Float
import smac
from smac import Callback
from smac import HyperparameterOptimizationFacade as HPOFacade
from smac import Scenario
from smac.runhistory import TrialInfo, TrialValue
__copyright__ = "Copyright 2025, Leibniz University Hanover, Institute of AI"
__license__ = "3-clause BSD"
class Rosenbrock2D:
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
x0 = Float("x0", (-5, 10), default=-3)
x1 = Float("x1", (-5, 10), default=-4)
cs.add([x0, x1])
return cs
def train(self, config: Configuration, seed: int = 0) -> float:
x1 = config["x0"]
x2 = config["x1"]
cost = 100.0 * (x2 - x1**2.0) ** 2.0 + (1 - x1) ** 2.0
return cost
class CustomCallback(Callback):
def __init__(self) -> None:
self.trials_counter = 0
def on_start(self, smbo: smac.main.smbo.SMBO) -> None:
print("Let's start!")
print("")
def on_tell_end(self, smbo: smac.main.smbo.SMBO, info: TrialInfo, value: TrialValue) -> bool | None:
self.trials_counter += 1
if self.trials_counter % 10 == 0:
print(f"Evaluated {self.trials_counter} trials so far.")
incumbent = smbo.intensifier.get_incumbent()
assert incumbent is not None
print(f"Current incumbent: {incumbent.get_dictionary()}")
print(f"Current incumbent value: {smbo.runhistory.get_cost(incumbent)}")
print("")
if self.trials_counter == 50:
print(f"We just triggered to stop the optimization after {smbo.runhistory.finished} finished trials.")
return False
return None
if __name__ == "__main__":
model = Rosenbrock2D()
# Scenario object specifying the optimization "environment"
scenario = Scenario(model.configspace, n_trials=200)
# Now we use SMAC to find the best hyperparameters
HPOFacade(
scenario,
model.train,
overwrite=True,
callbacks=[CustomCallback()],
logging_level=999999,
).optimize()