Ask-and-Tell#
Expand to copy examples/1_basics/3_ask_and_tell.py
(top right)
from ConfigSpace import Configuration, ConfigurationSpace, Float
from smac import HyperparameterOptimizationFacade, Scenario
from smac.runhistory.dataclasses import TrialValue
__copyright__ = "Copyright 2025, Leibniz University Hanover, Institute of AI"
__license__ = "3-clause BSD"
class Rosenbrock2D:
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
x0 = Float("x0", (-5, 10), default=-3)
x1 = Float("x1", (-5, 10), default=-4)
cs.add([x0, x1])
return cs
def train(self, config: Configuration, seed: int = 0) -> float:
"""The 2-dimensional Rosenbrock function as a toy model.
The Rosenbrock function is well know in the optimization community and
often serves as a toy problem. It can be defined for arbitrary
dimensions. The minimium is always at x_i = 1 with a function value of
zero. All input parameters are continuous. The search domain for
all x's is the interval [-5, 10].
"""
x1 = config["x0"]
x2 = config["x1"]
cost = 100.0 * (x2 - x1**2.0) ** 2.0 + (1 - x1) ** 2.0
return cost
if __name__ == "__main__":
model = Rosenbrock2D()
# Scenario object
scenario = Scenario(model.configspace, deterministic=False, n_trials=100)
intensifier = HyperparameterOptimizationFacade.get_intensifier(
scenario,
max_config_calls=1, # We basically use one seed per config only
)
# Now we use SMAC to find the best hyperparameters
smac = HyperparameterOptimizationFacade(
scenario,
model.train,
intensifier=intensifier,
overwrite=True,
)
# We can ask SMAC which trials should be evaluated next
for _ in range(10):
info = smac.ask()
assert info.seed is not None
cost = model.train(info.config, seed=info.seed)
value = TrialValue(cost=cost, time=0.5)
smac.tell(info, value)
# After calling ask+tell, we can still optimize
# Note: SMAC will optimize the next 90 trials because 10 trials already have been evaluated
incumbent = smac.optimize()
# Get cost of default configuration
default_cost = smac.validate(model.configspace.get_default_configuration())
print(f"Default cost: {default_cost}")
# Let's calculate the cost of the incumbent
incumbent_cost = smac.validate(incumbent)
print(f"Incumbent cost: {incumbent_cost}")
Description#
This examples show how to use the Ask-and-Tell interface.
from ConfigSpace import Configuration, ConfigurationSpace, Float
from smac import HyperparameterOptimizationFacade, Scenario
from smac.runhistory.dataclasses import TrialValue
__copyright__ = "Copyright 2025, Leibniz University Hanover, Institute of AI"
__license__ = "3-clause BSD"
class Rosenbrock2D:
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
x0 = Float("x0", (-5, 10), default=-3)
x1 = Float("x1", (-5, 10), default=-4)
cs.add([x0, x1])
return cs
def train(self, config: Configuration, seed: int = 0) -> float:
"""The 2-dimensional Rosenbrock function as a toy model.
The Rosenbrock function is well know in the optimization community and
often serves as a toy problem. It can be defined for arbitrary
dimensions. The minimium is always at x_i = 1 with a function value of
zero. All input parameters are continuous. The search domain for
all x's is the interval [-5, 10].
"""
x1 = config["x0"]
x2 = config["x1"]
cost = 100.0 * (x2 - x1**2.0) ** 2.0 + (1 - x1) ** 2.0
return cost
if __name__ == "__main__":
model = Rosenbrock2D()
# Scenario object
scenario = Scenario(model.configspace, deterministic=False, n_trials=100)
intensifier = HyperparameterOptimizationFacade.get_intensifier(
scenario,
max_config_calls=1, # We basically use one seed per config only
)
# Now we use SMAC to find the best hyperparameters
smac = HyperparameterOptimizationFacade(
scenario,
model.train,
intensifier=intensifier,
overwrite=True,
)
# We can ask SMAC which trials should be evaluated next
for _ in range(10):
info = smac.ask()
assert info.seed is not None
cost = model.train(info.config, seed=info.seed)
value = TrialValue(cost=cost, time=0.5)
smac.tell(info, value)
# After calling ask+tell, we can still optimize
# Note: SMAC will optimize the next 90 trials because 10 trials already have been evaluated
incumbent = smac.optimize()
# Get cost of default configuration
default_cost = smac.validate(model.configspace.get_default_configuration())
print(f"Default cost: {default_cost}")
# Let's calculate the cost of the incumbent
incumbent_cost = smac.validate(incumbent)
print(f"Incumbent cost: {incumbent_cost}")