Skip to content
SMAC3
Boing subspace
Initializing search
automl/SMAC3
Home
Installation
Package Overview
Getting Started
Advanced Usage
Examples
API
Info & FAQ
SMAC3
automl/SMAC3
Home
Installation
Package Overview
Getting Started
Advanced Usage
Advanced Usage
Components
Multi-Fidelity Optimization
Multi-Objective Optimization
Optimization across Instances
Ask-and-Tell Interface
Command-Line Interface
Stopping Criteria
Logging
Parallelism
Continue
Reproducibility
Optimizations
Examples
Examples
1 Basics
1 Basics
Quadratic Function
Support Vector Machine with Cross-Validation
Ask-and-Tell
Custom Callback
Continue an Optimization
User Priors over the Optimum
Parallelization on Cluster
Warmstarting SMAC
2 Multi Fidelity and Multi Instances
2 Multi Fidelity and Multi Instances
Multi-Layer Perceptron Using Multiple Epochs
Stochastic Gradient Descent On Multiple Datasets
Specify Number of Trials via a Total Budget in Hyperband
3 Multi Objective
3 Multi Objective
2D Schaffer Function with Objective Weights
ParEGO
4 Advanced Topics
4 Advanced Topics
Callback for logging run metadata
Speeding up Cross-Validation with Intensification
5 Command Line Interface
5 Command Line Interface
Call Target Function From Script
API
API
Smac
Smac
Constants
Scenario
Acquisition
Acquisition
Function
Function
Abstract acquisition function
Confidence bound
Expected improvement
Integrated acquisition function
Prior acquisition function
Probability improvement
Thompson
Maximizer
Maximizer
Abstract acquisition maximizer
Differential evolution
Helpers
Local and random search
Local search
Random search
Callback
Callback
Callback
Metadata callback
Facade
Facade
Abstract facade
Algorithm configuration facade
Blackbox facade
Hyperband facade
Hyperparameter optimization facade
Multi fidelity facade
Random facade
Initial design
Initial design
Abstract initial design
Default design
Factorial design
Latin hypercube design
Random design
Sobol design
Intensifier
Intensifier
Abstract intensifier
Hyperband
Hyperband utils
Intensifier
Successive halving
Main
Main
Config selector
Smbo
Model
Model
Abstract model
Multi objective model
Random model
Gaussian process
Gaussian process
Abstract gaussian process
Gaussian process
Gpytorch gaussian process
Mcmc gaussian process
Kernels
Kernels
Base kernels
Hamming kernel
Matern kernel
Rbf kernel
White kernel
Priors
Priors
Abstract prior
Gamma prior
Horseshoe prior
Log normal prior
Tophat prior
Random forest
Random forest
Abstract random forest
Random forest
Multi objective
Multi objective
Abstract multi objective algorithm
Aggregation strategy
Parego
Random design
Random design
Abstract random design
Annealing design
Modulus design
Probability design
Runhistory
Runhistory
Dataclasses
Enumerations
Errors
Runhistory
Encoder
Encoder
Abstract encoder
Boing encoder
Eips encoder
Encoder
Inverse scaled encoder
Log encoder
Log scaled encoder
Scaled encoder
Sqrt scaled encoder
Runner
Runner
Abstract runner
Abstract serial runner
Dask runner
Exceptions
Target function runner
Target function script runner
Utils
Utils
Configspace
Data structures
Logging
Multi objective
Numpyencoder
Pareto front
Subspaces
Subspaces
Boing subspace
Boing subspace
Table of contents
boing_subspace
Turbo subspace
Info & FAQ
Info & FAQ
References
Glossary
F.A.Q.
Boing subspace
smac.utils.subspaces.boing_subspace
#