Log scaled encoder
smac.runhistory.encoder.log_scaled_encoder
#
RunHistoryLogScaledEncoder
#
RunHistoryLogScaledEncoder(
scenario: Scenario,
considered_states: list[StatusType] = None,
lower_budget_states: list[StatusType] = None,
scale_percentage: int = 5,
seed: int | None = None,
)
Bases: RunHistoryEncoder
Source code in smac/runhistory/encoder/abstract_encoder.py
meta
property
#
Returns the meta-data of the created object.
Returns#
dict[str, Any]: meta-data of the created object: name, considered states, lower budget states, scale_percentage, seed.
multi_objective_algorithm
property
writable
#
multi_objective_algorithm: (
AbstractMultiObjectiveAlgorithm | None
)
The multi objective algorithm used to transform the data.
get_configurations
#
Returns vector representation of the configurations.
Warning#
Instance features are not appended and cost values are not taken into account.
Parameters#
budget_subset : list[int|float] | None, defaults to none List of budgets to consider.
Returns#
configs_array : np.ndarray
Source code in smac/runhistory/encoder/abstract_encoder.py
transform
#
Returns a vector representation of the RunHistory.
Parameters#
budget_subset : list | None, defaults to none List of budgets to consider.
Returns#
X : np.ndarray Configuration vector and instance features. Y : np.ndarray Cost values.
Source code in smac/runhistory/encoder/abstract_encoder.py
transform_response_values
#
Transform the response values by linearly scaling them between zero and one and then using the log transformation.