Bases: AbstractMultiObjectiveAlgorithm
A class to mean-aggregate multi-objective costs to a single cost.
Parameters
scenario : Scenario
objective_weights : list[float] | None, defaults to None
Weights for an weighted average. Must be of the same length as the number of objectives.
Source code in smac/multi_objective/aggregation_strategy.py
| def __init__(
self,
scenario: Scenario,
objective_weights: list[float] | None = None,
):
super(MeanAggregationStrategy, self).__init__()
if objective_weights is not None and scenario.count_objectives() != len(objective_weights):
raise ValueError("Number of objectives and number of weights must be equal.")
self._objective_weights = objective_weights
|
Returns the meta data of the created object.
update_on_iteration_start
update_on_iteration_start() -> None
Update the internal state on start of each SMBO iteration.
Source code in smac/multi_objective/abstract_multi_objective_algorithm.py
| def update_on_iteration_start(self) -> None:
"""Update the internal state on start of each SMBO iteration."""
pass
|