Rbf kernel
smac.model.gaussian_process.kernels.rbf_kernel
#
RBFKernel
#
RBFKernel(
length_scale: float | tuple[float, ...] | ndarray = 1.0,
length_scale_bounds: (
tuple[float, float]
| list[tuple[float, float]]
| ndarray
) = (1e-05, 100000.0),
operate_on: ndarray | None = None,
has_conditions: bool = False,
prior: AbstractPrior | None = None,
)
Bases: AbstractKernel
, RBF
RBF kernel implementation.
Source code in smac/model/gaussian_process/kernels/rbf_kernel.py
hyperparameters
property
#
hyperparameters: list[Hyperparameter]
Returns a list of all hyperparameter specifications.
meta
property
#
Returns the meta data of the created object. This method calls the get_params
method to collect the
parameters of the kernel.
__call__
#
__call__(
X: ndarray,
Y: ndarray | None = None,
eval_gradient: bool = False,
active: ndarray | None = None,
) -> ndarray | tuple[ndarray, ndarray]
Call the kernel function. Internally, self._call
is called, which must be specified by a subclass.
Source code in smac/model/gaussian_process/kernels/base_kernels.py
get_params
#
Get parameters of this kernel.
Parameters#
deep : bool, defaults to True If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns#
params : dict[str, Any] Parameter names mapped to their values.