Hamming kernel
smac.model.gaussian_process.kernels.hamming_kernel
#
HammingKernel
#
HammingKernel(
length_scale: float | tuple[float, ...] | ndarray = 1.0,
length_scale_bounds: (
tuple[float, float]
| list[tuple[float, float]]
| ndarray
) = (1e-05, 100000.0),
operate_on: ndarray | None = None,
has_conditions: bool = False,
prior: AbstractPrior | None = None,
)
Bases: AbstractKernel
, StationaryKernelMixin
, NormalizedKernelMixin
, Kernel
Hamming kernel implementation.
Source code in smac/model/gaussian_process/kernels/hamming_kernel.py
hyperparameter_length_scale
property
#
hyperparameter_length_scale: Hyperparameter
Hyperparameter of the length scale.
hyperparameters
property
#
hyperparameters: list[Hyperparameter]
Returns a list of all hyperparameter specifications.
__call__
#
__call__(
X: ndarray,
Y: ndarray | None = None,
eval_gradient: bool = False,
active: ndarray | None = None,
) -> ndarray | tuple[ndarray, ndarray]
Call the kernel function. Internally, self._call
is called, which must be specified by a subclass.
Source code in smac/model/gaussian_process/kernels/base_kernels.py
get_params
#
Get parameters of this kernel.
Parameters#
deep : bool, defaults to True If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns#
params : dict[str, Any] Parameter names mapped to their values.