Rnd
mighty.mighty_meta.rnd
#
Internal reward via RND.
NovelD
#
NovelD(
rnd_output_dim: int = 512,
rnd_network_config: dict | None = None,
internal_reward_weight: float = 0.1,
rnd_lr: float = 0.001,
rnd_eps: float = 1e-05,
rnd_weight_decay: float = 0.01,
update_proportion: float = 0.5,
)
Bases: RND
:param initial_lr: Initial maximal LR :param num_decay_steps: Length of schedule in steps :param min_lr: Minimal LR :param restart_every: Restart frequency :param restart multiplier: Multiplies current learning rate on restart. :return:
Source code in mighty/mighty_meta/rnd.py
post_episode
#
Execute methods at the end of an episode.
:param metrics: Current metrics dict :return:
post_step
#
Execute methods after a step.
:param metrics: Current metrics dict :return:
post_update
#
Execute methods after the update.
:param metrics: Current metrics dict :return:
pre_episode
#
Execute methods before an episode.
:param metrics: Current metrics dict :return:
pre_step
#
Execute methods before a step.
:param metrics: Current metrics dict :return:
pre_update
#
Execute methods before the update.
:param metrics: Current metrics dict :return:
RND
#
RND(
rnd_output_dim: int = 512,
rnd_network_config: dict | None = None,
internal_reward_weight: float = 0.1,
rnd_lr: float = 0.001,
rnd_eps: float = 1e-05,
rnd_weight_decay: float = 0.01,
update_proportion: float = 0.5,
)
Bases: MightyMetaComponent
Cosine LR Schedule with optional warm restarts.
:param initial_lr: Initial maximal LR :param num_decay_steps: Length of schedule in steps :param min_lr: Minimal LR :param restart_every: Restart frequency :param restart multiplier: Multiplies current learning rate on restart. :return:
Source code in mighty/mighty_meta/rnd.py
get_reward
#
Adapt LR on step.
:param metrics: Dict of current metrics :return:
Source code in mighty/mighty_meta/rnd.py
post_episode
#
Execute methods at the end of an episode.
:param metrics: Current metrics dict :return:
post_step
#
Execute methods after a step.
:param metrics: Current metrics dict :return:
post_update
#
Execute methods after the update.
:param metrics: Current metrics dict :return:
pre_episode
#
Execute methods before an episode.
:param metrics: Current metrics dict :return:
pre_step
#
Execute methods before a step.
:param metrics: Current metrics dict :return:
pre_update
#
Execute methods before the update.
:param metrics: Current metrics dict :return: