Ppo
mighty.mighty_agents.ppo
#
MightyPPOAgent
#
MightyPPOAgent(
output_dir,
env: MIGHTYENV,
eval_env: Optional[MIGHTYENV] = None,
seed: Optional[int] = None,
learning_rate: float = 0.001,
gamma: float = 0.99,
batch_size: int = 64,
learning_starts: int = 1,
render_progress: bool = True,
log_wandb: bool = False,
wandb_kwargs: Optional[Dict] = None,
rollout_buffer_class: Optional[
str | DictConfig | Type[MightyRolloutBuffer]
] = MightyRolloutBuffer,
rollout_buffer_kwargs: Optional[TypeKwargs] = None,
meta_methods: Optional[List[str | type]] = None,
meta_kwargs: Optional[List[TypeKwargs]] = None,
n_policy_units: int = 8,
n_critic_units: int = 8,
soft_update_weight: float = 0.01,
policy_class: Optional[
Union[
str, DictConfig, Type[MightyExplorationPolicy]
]
] = None,
policy_kwargs: Optional[Dict] = None,
ppo_clip: float = 0.2,
value_loss_coef: float = 0.5,
entropy_coef: float = 0.01,
max_grad_norm: float = 0.5,
n_gradient_steps: int = 10,
)
Bases: MightyAgent
Creates all relevant class variables and calls the agent-specific init function.
:param env: Train environment :param eval_env: Evaluation environment :param seed: Seed for random number generators :param learning_rate: Learning rate for training :param gamma: Discount factor :param batch_size: Batch size for training :param learning_starts: Number of steps before learning starts :param render_progress: Whether to render progress :param log_tensorboard: Log to TensorBoard as well as to file :param log_wandb: Log to Weights and Biases :param wandb_kwargs: Arguments for Weights and Biases logging :param rollout_buffer_class: Rollout buffer class :param rollout_buffer_kwargs: Arguments for the rollout buffer :param meta_methods: Meta methods for the agent :param meta_kwargs: Arguments for meta methods :param n_policy_units: Number of units for the policy network :param n_critic_units: Number of units for the critic network :param soft_update_weight: Size of soft updates for the target network :param policy_class: Policy class :param policy_kwargs: Arguments for the policy :param ppo_clip: Clipping parameter for PPO :param value_loss_coef: Coefficient for the value loss :param entropy_coef: Coefficient for the entropy loss :param max_grad_norm: Maximum gradient norm :param n_gradient_steps: Number of gradient steps per update
Source code in mighty/mighty_agents/ppo.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
|
__del__
#
adapt_hps
#
adapt_hps(metrics: Dict) -> None
Set hyperparameters.
Source code in mighty/mighty_agents/base_agent.py
apply_config
#
apply_config(config: Dict) -> None
Apply config to agent.
Source code in mighty/mighty_agents/base_agent.py
evaluate
#
evaluate(eval_env: MIGHTYENV | None = None) -> Dict
Eval agent on an environment. (Full rollouts).
:param env: The environment to evaluate on :param episodes: The number of episodes to evaluate :return:
Source code in mighty/mighty_agents/base_agent.py
initialize_agent
#
General initialization of tracer and buffer for all agents.
Algorithm specific initialization like policies etc. are done in _initialize_agent
Source code in mighty/mighty_agents/base_agent.py
load
#
load(path: str) -> None
Load the internal state of the agent.
Source code in mighty/mighty_agents/ppo.py
make_checkpoint_dir
#
make_checkpoint_dir(t: int) -> None
Checkpoint model.
:param T: Current timestep :return:
Source code in mighty/mighty_agents/base_agent.py
run
#
run(
n_steps: int,
eval_every_n_steps: int = 1000,
human_log_every_n_steps: int = 5000,
save_model_every_n_steps: int | None = 5000,
env: MIGHTYENV = None,
) -> Dict
Run agent.
Source code in mighty/mighty_agents/base_agent.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|
save
#
save(t: int) -> None
Save current agent state.
Source code in mighty/mighty_agents/ppo.py
update
#
Update agent.
Source code in mighty/mighty_agents/base_agent.py
update_agent
#
update_agent(next_s, dones, **kwargs) -> Dict
Update the agent using PPO.
:return: Dictionary containing the update metrics.