Ppo
mighty.mighty_agents.ppo
#
MightyPPOAgent
#
MightyPPOAgent(
output_dir,
env: MIGHTYENV,
eval_env: Optional[MIGHTYENV] = None,
seed: Optional[int] = None,
learning_rate: float = 0.001,
gamma: float = 0.99,
batch_size: int = 64,
learning_starts: int = 1,
render_progress: bool = True,
log_wandb: bool = False,
wandb_kwargs: dict | None = None,
log_infos: bool = False,
rollout_buffer_class: Optional[
str | DictConfig | Type[MightyRolloutBuffer]
] = MightyRolloutBuffer,
rollout_buffer_kwargs: Optional[TypeKwargs] = {
"buffer_size": 256
},
meta_methods: Optional[List[str | type]] = None,
meta_kwargs: Optional[List[TypeKwargs]] = None,
n_policy_units: int = 8,
n_critic_units: int = 8,
soft_update_weight: float = 0.01,
policy_class: Optional[
Union[
str, DictConfig, Type[MightyExplorationPolicy]
]
] = None,
policy_kwargs: Optional[Dict] = None,
ppo_clip: float = 0.2,
value_loss_coef: float = 0.5,
entropy_coef: float = 0.01,
max_grad_norm: float = 0.5,
n_gradient_steps: int = 10,
hidden_sizes: Optional[List[int]] = [64, 64],
activation: Optional[str] = "tanh",
n_epochs: int = 10,
minibatch_size: int = 32,
kl_target: float = 0.001,
use_value_clip: bool = True,
value_clip_eps: float = 0.2,
total_timesteps: int = 1000000,
normalize_obs: bool = False,
normalize_reward: bool = False,
rescale_action: bool = False,
tanh_squash: bool = False,
)
Bases: MightyAgent
Creates all relevant class variables and calls the agent-specific init function.
:param env: Train environment :param eval_env: Evaluation environment :param seed: Seed for random number generators :param learning_rate: Learning rate for training :param gamma: Discount factor :param batch_size: Batch size for training :param learning_starts: Number of steps before learning starts :param render_progress: Whether to render progress :param log_tensorboard: Log to TensorBoard as well as to file :param log_wandb: Log to Weights and Biases :param wandb_kwargs: Arguments for Weights and Biases logging :param rollout_buffer_class: Rollout buffer class :param rollout_buffer_kwargs: Arguments for the rollout buffer :param meta_methods: Meta methods for the agent :param meta_kwargs: Arguments for meta methods :param n_policy_units: Number of units for the policy network :param n_critic_units: Number of units for the critic network :param soft_update_weight: Size of soft updates for the target network :param policy_class: Policy class :param policy_kwargs: Arguments for the policy :param ppo_clip: Clipping parameter for PPO :param value_loss_coef: Coefficient for the value loss :param entropy_coef: Coefficient for the entropy loss :param max_grad_norm: Maximum gradient norm :param n_gradient_steps: Number of gradient steps per update
Source code in mighty/mighty_agents/ppo.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | |
parameters
property
#
parameters: List[Parameter]
Return all trainable parameters (policy + value) for PPO.
__del__
#
adapt_hps
#
adapt_hps(metrics: Dict) -> None
Set hyperparameters.
Source code in mighty/mighty_agents/base_agent.py
apply_config
#
apply_config(config: Dict) -> None
Apply config to agent.
Source code in mighty/mighty_agents/base_agent.py
evaluate
#
Eval agent on an environment. (Full rollouts).
:param env: The environment to evaluate on :param episodes: The number of episodes to evaluate :return:
Source code in mighty/mighty_agents/base_agent.py
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 | |
initialize_agent
#
General initialization of tracer and buffer for all agents.
Algorithm specific initialization like policies etc. are done in _initialize_agent
Source code in mighty/mighty_agents/base_agent.py
load
#
load(path: str) -> None
Load the internal state of the agent.
Source code in mighty/mighty_agents/ppo.py
make_checkpoint_dir
#
make_checkpoint_dir(t: int) -> None
Checkpoint model.
:param T: Current timestep :return:
Source code in mighty/mighty_agents/base_agent.py
run
#
run(
n_steps: int,
eval_every_n_steps: int = 1000,
save_model_every_n_steps: int | None = 5000,
env: MIGHTYENV = None,
) -> Dict
Run agent.
Source code in mighty/mighty_agents/base_agent.py
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 | |
save
#
save(t: int) -> None
Save current agent state.
Source code in mighty/mighty_agents/ppo.py
update_agent
#
update_agent(
transition_batch, batches_left, next_s, dones, **kwargs
) -> Dict
Update the agent using PPO.
:return: Dictionary containing the update metrics.