Dqn
mighty.mighty_agents.dqn
#
DQN agent.
MightyDQNAgent
#
MightyDQNAgent(
output_dir: str,
env: MIGHTYENV,
seed: int | None = None,
eval_env: MIGHTYENV = None,
learning_rate: float = 0.01,
gamma: float = 0.9,
epsilon: float = 0.1,
batch_size: int = 64,
learning_starts: int = 1,
render_progress: bool = True,
log_wandb: bool = False,
wandb_kwargs: dict | None = None,
replay_buffer_class: str
| DictConfig
| type[MightyReplay]
| None = None,
replay_buffer_kwargs: TypeKwargs | None = None,
meta_methods: list[str | type] | None = None,
meta_kwargs: list[TypeKwargs] | None = None,
use_target: bool = True,
n_units: int = 8,
soft_update_weight: float = 0.01,
target_update_freq: int | None = None,
policy_class: str
| DictConfig
| type[MightyExplorationPolicy]
| None = None,
policy_kwargs: TypeKwargs | None = None,
q_class: str | DictConfig | type[DQN] | None = None,
q_kwargs: TypeKwargs | None = None,
td_update_class: type[QLearning] = QLearning,
td_update_kwargs: TypeKwargs | None = None,
save_replay: bool = False,
n_gradient_steps: int = 1,
normalize_obs: bool = False,
normalize_reward: bool = False,
rescale_action: bool = False,
)
Bases: MightyAgent
Mighty DQN agent.
This agent implements the DQN algorithm and extension as first proposed in "Playing Atari with Deep Reinforcement Learning" by Mnih et al. in 2013. DDQN was proposed by van Hasselt et al. in 2016's "Deep Reinforcement Learning with Double Q-learning". Like all Mighty agents, it's supposed to be called via the train method. By default, this agent uses an epsilon-greedy policy.
Creates all relevant class variables and calls agent-specific init function
:param env: Train environment :param eval_env: Evaluation environment :param learning_rate: Learning rate for training :param epsilon: Exploration factor for training :param batch_size: Batch size for training :param render_progress: Render progress :param log_tensorboard: Log to tensorboard as well as to file :param replay_buffer_class: Replay buffer class from coax replay buffers :param replay_buffer_kwargs: Arguments for the replay buffer :param tracer_class: Reward tracing class from coax tracers :param tracer_kwargs: Arguments for the reward tracer :param n_units: Number of units for Q network :param soft_update_weight: Size of soft updates for target network :param policy_class: Policy class from coax value-based policies :param policy_kwargs: Arguments for the policy :param td_update_class: Kind of TD update used from coax TD updates :param td_update_kwargs: Arguments for the TD update :return:
Source code in mighty/mighty_agents/dqn.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
|
__del__
#
adapt_hps
#
adapt_hps(metrics: Dict) -> None
Set hyperparameters.
Source code in mighty/mighty_agents/dqn.py
apply_config
#
apply_config(config: Dict) -> None
Apply config to agent.
Source code in mighty/mighty_agents/base_agent.py
evaluate
#
evaluate(eval_env: MIGHTYENV | None = None) -> Dict
Eval agent on an environment. (Full rollouts).
:param env: The environment to evaluate on :param episodes: The number of episodes to evaluate :return:
Source code in mighty/mighty_agents/base_agent.py
initialize_agent
#
General initialization of tracer and buffer for all agents.
Algorithm specific initialization like policies etc. are done in _initialize_agent
Source code in mighty/mighty_agents/base_agent.py
load
#
load(path: str) -> None
Set the internal state of the agent, e.g. after loading.
Source code in mighty/mighty_agents/dqn.py
make_checkpoint_dir
#
make_checkpoint_dir(t: int) -> None
Checkpoint model.
:param T: Current timestep :return:
Source code in mighty/mighty_agents/base_agent.py
run
#
run(
n_steps: int,
eval_every_n_steps: int = 1000,
save_model_every_n_steps: int | None = 5000,
env: MIGHTYENV = None,
) -> Dict
Run agent.
Source code in mighty/mighty_agents/base_agent.py
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
|
save
#
save(t: int) -> None
Return current agent state, e.g. for saving.
For DQN, this consists of: - the Q network parameters - the Q network function state - the target network parameters - the target network function state
:return: Agent state
Source code in mighty/mighty_agents/dqn.py
update
#
Update agent.
Source code in mighty/mighty_agents/base_agent.py
update_agent
#
update_agent(
transition_batch, batches_left, **kwargs
) -> Any
Compute and apply TD update.
:param step: Current training step :return: