Dqn
mighty.mighty_agents.dqn
#
DQN agent.
MightyDQNAgent
#
MightyDQNAgent(
output_dir: str,
env: MIGHTYENV,
seed: int | None = None,
eval_env: MIGHTYENV = None,
learning_rate: float = 0.01,
gamma: float = 0.9,
epsilon: float = 0.1,
batch_size: int = 64,
learning_starts: int = 1,
render_progress: bool = True,
log_wandb: bool = False,
wandb_kwargs: dict | None = None,
replay_buffer_class: str
| DictConfig
| type[MightyReplay]
| None = None,
replay_buffer_kwargs: TypeKwargs | None = None,
meta_methods: list[str | type] | None = None,
meta_kwargs: list[TypeKwargs] | None = None,
use_target: bool = True,
n_units: int = 8,
soft_update_weight: float = 0.01,
policy_class: str
| DictConfig
| type[MightyExplorationPolicy]
| None = None,
policy_kwargs: TypeKwargs | None = None,
q_class: str | DictConfig | type[DQN] | None = None,
q_kwargs: TypeKwargs | None = None,
td_update_class: type[QLearning] = QLearning,
td_update_kwargs: TypeKwargs | None = None,
save_replay: bool = False,
)
Bases: MightyAgent
Mighty DQN agent.
This agent implements the DQN algorithm and extension as first proposed in "Playing Atari with Deep Reinforcement Learning" by Mnih et al. in 2013. DDQN was proposed by van Hasselt et al. in 2016's "Deep Reinforcement Learning with Double Q-learning". Like all Mighty agents, it's supposed to be called via the train method. By default, this agent uses an epsilon-greedy policy.
Creates all relevant class variables and calls agent-specific init function
:param env: Train environment :param eval_env: Evaluation environment :param learning_rate: Learning rate for training :param epsilon: Exploration factor for training :param batch_size: Batch size for training :param render_progress: Render progress :param log_tensorboard: Log to tensorboard as well as to file :param replay_buffer_class: Replay buffer class from coax replay buffers :param replay_buffer_kwargs: Arguments for the replay buffer :param tracer_class: Reward tracing class from coax tracers :param tracer_kwargs: Arguments for the reward tracer :param n_units: Number of units for Q network :param soft_update_weight: Size of soft updates for target network :param policy_class: Policy class from coax value-based policies :param policy_kwargs: Arguments for the policy :param td_update_class: Kind of TD update used from coax TD updates :param td_update_kwargs: Arguments for the TD update :return:
Source code in mighty/mighty_agents/dqn.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
__del__
#
adapt_hps
#
adapt_hps(metrics: Dict) -> None
Set hyperparameters.
Source code in mighty/mighty_agents/dqn.py
apply_config
#
apply_config(config: Dict) -> None
Apply config to agent.
Source code in mighty/mighty_agents/base_agent.py
evaluate
#
evaluate(eval_env: MIGHTYENV | None = None) -> Dict
Eval agent on an environment. (Full rollouts).
:param env: The environment to evaluate on :param episodes: The number of episodes to evaluate :return:
Source code in mighty/mighty_agents/base_agent.py
initialize_agent
#
General initialization of tracer and buffer for all agents.
Algorithm specific initialization like policies etc. are done in _initialize_agent
Source code in mighty/mighty_agents/base_agent.py
load
#
load(path: str) -> None
Set the internal state of the agent, e.g. after loading.
Source code in mighty/mighty_agents/dqn.py
make_checkpoint_dir
#
make_checkpoint_dir(t: int) -> None
Checkpoint model.
:param T: Current timestep :return:
Source code in mighty/mighty_agents/base_agent.py
run
#
run(
n_steps: int,
eval_every_n_steps: int = 1000,
human_log_every_n_steps: int = 5000,
save_model_every_n_steps: int | None = 5000,
env: MIGHTYENV = None,
) -> Dict
Run agent.
Source code in mighty/mighty_agents/base_agent.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|
save
#
save(t: int) -> None
Return current agent state, e.g. for saving.
For DQN, this consists of: - the Q network parameters - the Q network function state - the target network parameters - the target network function state
:return: Agent state
Source code in mighty/mighty_agents/dqn.py
update
#
Update agent.
Source code in mighty/mighty_agents/base_agent.py
update_agent
#
update_agent(**kwargs) -> Any
Compute and apply TD update.
:param step: Current training step :return: