Skip to content

Tasks

The task module implements a hierarchy of explanation tasks that can be used to explain HPO.

The tasks provide a convenient API to construct surrogate models from different data sources (pretrained estimators, empirical data, or a black box function) and to add domain specific information such as a baseline configuration or an optimizer of interest.

AblationExplanationTask

Bases: BaselineExplanationTask

Defines an ablation explanation task, comparing a configuration of interest to a baseline.

Source code in src/hypershap/task.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
class AblationExplanationTask(BaselineExplanationTask):
    """Defines an ablation explanation task, comparing a configuration of interest to a baseline."""

    def __init__(
        self,
        config_space: ConfigurationSpace,
        surrogate_model: SurrogateModel | list[SurrogateModel],
        baseline_config: Configuration,
        config_of_interest: Configuration,
    ) -> None:
        """Initialize an AblationExplanationTask with a baseline and a configuration of interest.

        Args:
            config_space: The configuration space.
            surrogate_model: The (list of) surrogate model(s) used for the explanation task.
            baseline_config: The baseline configuration.
            config_of_interest: The configuration of interest.

        """
        super().__init__(config_space, surrogate_model, baseline_config)
        self.config_of_interest = config_of_interest

__init__(config_space, surrogate_model, baseline_config, config_of_interest)

Initialize an AblationExplanationTask with a baseline and a configuration of interest.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
surrogate_model SurrogateModel | list[SurrogateModel]

The (list of) surrogate model(s) used for the explanation task.

required
baseline_config Configuration

The baseline configuration.

required
config_of_interest Configuration

The configuration of interest.

required
Source code in src/hypershap/task.py
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def __init__(
    self,
    config_space: ConfigurationSpace,
    surrogate_model: SurrogateModel | list[SurrogateModel],
    baseline_config: Configuration,
    config_of_interest: Configuration,
) -> None:
    """Initialize an AblationExplanationTask with a baseline and a configuration of interest.

    Args:
        config_space: The configuration space.
        surrogate_model: The (list of) surrogate model(s) used for the explanation task.
        baseline_config: The baseline configuration.
        config_of_interest: The configuration of interest.

    """
    super().__init__(config_space, surrogate_model, baseline_config)
    self.config_of_interest = config_of_interest

BaselineExplanationTask

Bases: ExplanationTask

Defines an explanation task with a baseline configuration.

Source code in src/hypershap/task.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
class BaselineExplanationTask(ExplanationTask):
    """Defines an explanation task with a baseline configuration."""

    def __init__(
        self,
        config_space: ConfigurationSpace,
        surrogate_model: SurrogateModel | list[SurrogateModel],
        baseline_config: Configuration,
    ) -> None:
        """Initialize a BaselineExplanationTask with a baseline configuration.

        Args:
            config_space: The configuration space.
            surrogate_model: The (list of) surrogate model(s) used for the explanation task.
            baseline_config: The baseline configuration.

        """
        super().__init__(config_space, surrogate_model)
        self.baseline_config = baseline_config

__init__(config_space, surrogate_model, baseline_config)

Initialize a BaselineExplanationTask with a baseline configuration.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
surrogate_model SurrogateModel | list[SurrogateModel]

The (list of) surrogate model(s) used for the explanation task.

required
baseline_config Configuration

The baseline configuration.

required
Source code in src/hypershap/task.py
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
def __init__(
    self,
    config_space: ConfigurationSpace,
    surrogate_model: SurrogateModel | list[SurrogateModel],
    baseline_config: Configuration,
) -> None:
    """Initialize a BaselineExplanationTask with a baseline configuration.

    Args:
        config_space: The configuration space.
        surrogate_model: The (list of) surrogate model(s) used for the explanation task.
        baseline_config: The baseline configuration.

    """
    super().__init__(config_space, surrogate_model)
    self.baseline_config = baseline_config

ExplanationTask

Defines the base class for explanation tasks, providing access to the configuration space and surrogate model.

Source code in src/hypershap/task.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
class ExplanationTask:
    """Defines the base class for explanation tasks, providing access to the configuration space and surrogate model."""

    def __init__(
        self,
        config_space: ConfigurationSpace,
        surrogate_model: SurrogateModel | list[SurrogateModel],
    ) -> None:
        """Initialize an ExplanationTask with a configuration space and surrogate model.

        Args:
            config_space: The configuration space for the explanation task.
            surrogate_model: The (list of) surrogate model(s) used for the explanation task.

        """
        self.config_space = config_space
        self.surrogate_model = surrogate_model

    def is_multi_data(self) -> bool:
        """Return if the explanation task is a multi-data task.

        Returns:
            True if the explanation task is a multi-data task.

        """
        return isinstance(self.surrogate_model, list)

    def get_single_surrogate_model(self) -> SurrogateModel:
        """Return the surrogate model for the explanation task.

        Returns:
            The surrogate model for the explanation task.

        """
        if isinstance(self.surrogate_model, list):
            raise TypeError

        return self.surrogate_model

    def get_surrogate_model_list(self) -> list[SurrogateModel]:
        """Return the list of surrogate models for the explanation task.

        Returns:
            The list of surrogate models for the explanation task.

        """
        if not isinstance(self.surrogate_model, list):
            raise TypeError

        return self.surrogate_model

    def get_num_hyperparameters(self) -> int:
        """Return the number of hyperparameters in the configuration space.

        Returns:
            The number of hyperparameters.

        """
        return len(self.config_space)

    def get_hyperparameter_names(self) -> list[str]:
        """Return the names of the hyperparameters in the configuration space.

        Returns:
            A list of hyperparameter names.

        """
        return list(self.config_space.keys())

    @staticmethod
    def from_base_model(config_space: ConfigurationSpace, base_model: BaseEstimator) -> ExplanationTask:
        """Create an ExplanationTask from a pre-trained base model.

        Args:
            config_space: The configuration space.
            base_model: The pre-trained base model.

        Returns:
            An ExplanationTask instance.

        """
        surrogate_model = ModelBasedSurrogateModel(config_space=config_space, base_model=base_model)
        return ExplanationTask(config_space=config_space, surrogate_model=surrogate_model)

    @staticmethod
    def from_data(
        config_space: ConfigurationSpace,
        data: list[tuple[Configuration, float]],
        base_model: BaseEstimator | None = None,
    ) -> ExplanationTask:
        """Create an ExplanationTask from a dataset of configurations and their performance.

        Args:
            config_space: The configuration space.
            data: A list of tuples, where each tuple contains a configuration and its corresponding performance.
            base_model: The base model to use for training the surrogate model. Defaults to RandomForestRegressor.

        Returns:
            An ExplanationTask instance.

        """
        surrogate_model = DataBasedSurrogateModel(config_space=config_space, data=data, base_model=base_model)
        return ExplanationTask(config_space=config_space, surrogate_model=surrogate_model)

    @staticmethod
    def from_function(
        config_space: ConfigurationSpace,
        function: Callable[[Configuration], float],
        n_samples: int = 1_000,
        base_model: BaseEstimator | None = None,
        seed: int | None = 0,
    ) -> ExplanationTask:
        """Create an ExplanationTask from a function that evaluates configurations.

        Args:
            config_space: The configuration space.
            function: A callable that takes a configuration and returns its performance.
            n_samples: The number of configurations to sample for training the surrogate model. Defaults to 1000.
            base_model: The base model to use for training the surrogate model. Defaults to RandomForestRegressor.
            seed: The seed for the random number generator, it is used to seed a deep copy of the config space.

        Returns:
            An ExplanationTask instance.

        """
        cs = deepcopy(config_space)
        if seed is not None:
            cs.seed(seed)
        samples: list[Configuration] = cs.sample_configuration(n_samples)
        values: list[float] = [function(config) for config in samples]
        data: list[tuple[Configuration, float]] = list(zip(samples, values, strict=False))
        base_model = base_model if base_model is not None else RandomForestRegressor(random_state=seed)

        return ExplanationTask.from_data(config_space=cs, data=data, base_model=base_model)

    @staticmethod
    def from_function_multidata(
        config_space: ConfigurationSpace,
        functions: list[Callable[[Configuration], float]],
        n_samples: int = 1_000,
        base_model: BaseEstimator | None = None,
    ) -> ExplanationTask:
        """Create an ExplanationTask from a list of functions that evaluate configurations.

        Args:
            config_space: The configuration space.
            functions: A list of callables that take a configuration and returns its performance.
            n_samples: The number of configurations to sample for training the surrogate model. Defaults to 1000.
            base_model: The base model to be used for training the surrogate model. Defaults to RandomForestRegressor.

        Returns:
            An ExplanationTask instance.

        """
        surrogate_model_list = [
            ExplanationTask.from_function(config_space, fun, n_samples, base_model).get_single_surrogate_model()
            for fun in functions
        ]
        return ExplanationTask(config_space=config_space, surrogate_model=surrogate_model_list)

    @staticmethod
    def from_data_multidata(
        config_space: ConfigurationSpace,
        data_multidata: list[list[tuple[Configuration, float]]],
        base_model: BaseEstimator | None = None,
    ) -> ExplanationTask:
        """Create an ExplanationTask from a list of datasets of different HPO tasks.

        Args:
            config_space: The configuration space.
            data_multidata: A list of tuples, where each tuple contains a configuration and its corresponding performance.
            base_model: The base model to use for training the surrogate model. Defaults to RandomForestRegressor.

        Returns:
            An ExplanationTask instance.

        """
        surrogate_model_list = [
            ExplanationTask.from_data(config_space, data, base_model).get_single_surrogate_model()
            for data in data_multidata
        ]
        return ExplanationTask(config_space=config_space, surrogate_model=surrogate_model_list)

    @staticmethod
    def from_basemodel_multidata(
        config_space: ConfigurationSpace,
        base_model: list[BaseEstimator],
    ) -> ExplanationTask:
        """Create an ExplanationTask from a list of datasets of different HPO tasks.

        Args:
            config_space: The configuration space.
            base_model: The list of base models to be used as surrogate models.

        Returns:
            An ExplanationTask instance.

        """
        surrogate_model_list: list[SurrogateModel] = [
            ModelBasedSurrogateModel(config_space=config_space, base_model=m) for m in base_model
        ]
        return ExplanationTask(config_space=config_space, surrogate_model=surrogate_model_list)

__init__(config_space, surrogate_model)

Initialize an ExplanationTask with a configuration space and surrogate model.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space for the explanation task.

required
surrogate_model SurrogateModel | list[SurrogateModel]

The (list of) surrogate model(s) used for the explanation task.

required
Source code in src/hypershap/task.py
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def __init__(
    self,
    config_space: ConfigurationSpace,
    surrogate_model: SurrogateModel | list[SurrogateModel],
) -> None:
    """Initialize an ExplanationTask with a configuration space and surrogate model.

    Args:
        config_space: The configuration space for the explanation task.
        surrogate_model: The (list of) surrogate model(s) used for the explanation task.

    """
    self.config_space = config_space
    self.surrogate_model = surrogate_model

from_base_model(config_space, base_model) staticmethod

Create an ExplanationTask from a pre-trained base model.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
base_model BaseEstimator

The pre-trained base model.

required

Returns:

Type Description
ExplanationTask

An ExplanationTask instance.

Source code in src/hypershap/task.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
@staticmethod
def from_base_model(config_space: ConfigurationSpace, base_model: BaseEstimator) -> ExplanationTask:
    """Create an ExplanationTask from a pre-trained base model.

    Args:
        config_space: The configuration space.
        base_model: The pre-trained base model.

    Returns:
        An ExplanationTask instance.

    """
    surrogate_model = ModelBasedSurrogateModel(config_space=config_space, base_model=base_model)
    return ExplanationTask(config_space=config_space, surrogate_model=surrogate_model)

from_basemodel_multidata(config_space, base_model) staticmethod

Create an ExplanationTask from a list of datasets of different HPO tasks.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
base_model list[BaseEstimator]

The list of base models to be used as surrogate models.

required

Returns:

Type Description
ExplanationTask

An ExplanationTask instance.

Source code in src/hypershap/task.py
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
@staticmethod
def from_basemodel_multidata(
    config_space: ConfigurationSpace,
    base_model: list[BaseEstimator],
) -> ExplanationTask:
    """Create an ExplanationTask from a list of datasets of different HPO tasks.

    Args:
        config_space: The configuration space.
        base_model: The list of base models to be used as surrogate models.

    Returns:
        An ExplanationTask instance.

    """
    surrogate_model_list: list[SurrogateModel] = [
        ModelBasedSurrogateModel(config_space=config_space, base_model=m) for m in base_model
    ]
    return ExplanationTask(config_space=config_space, surrogate_model=surrogate_model_list)

from_data(config_space, data, base_model=None) staticmethod

Create an ExplanationTask from a dataset of configurations and their performance.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
data list[tuple[Configuration, float]]

A list of tuples, where each tuple contains a configuration and its corresponding performance.

required
base_model BaseEstimator | None

The base model to use for training the surrogate model. Defaults to RandomForestRegressor.

None

Returns:

Type Description
ExplanationTask

An ExplanationTask instance.

Source code in src/hypershap/task.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
@staticmethod
def from_data(
    config_space: ConfigurationSpace,
    data: list[tuple[Configuration, float]],
    base_model: BaseEstimator | None = None,
) -> ExplanationTask:
    """Create an ExplanationTask from a dataset of configurations and their performance.

    Args:
        config_space: The configuration space.
        data: A list of tuples, where each tuple contains a configuration and its corresponding performance.
        base_model: The base model to use for training the surrogate model. Defaults to RandomForestRegressor.

    Returns:
        An ExplanationTask instance.

    """
    surrogate_model = DataBasedSurrogateModel(config_space=config_space, data=data, base_model=base_model)
    return ExplanationTask(config_space=config_space, surrogate_model=surrogate_model)

from_data_multidata(config_space, data_multidata, base_model=None) staticmethod

Create an ExplanationTask from a list of datasets of different HPO tasks.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
data_multidata list[list[tuple[Configuration, float]]]

A list of tuples, where each tuple contains a configuration and its corresponding performance.

required
base_model BaseEstimator | None

The base model to use for training the surrogate model. Defaults to RandomForestRegressor.

None

Returns:

Type Description
ExplanationTask

An ExplanationTask instance.

Source code in src/hypershap/task.py
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
@staticmethod
def from_data_multidata(
    config_space: ConfigurationSpace,
    data_multidata: list[list[tuple[Configuration, float]]],
    base_model: BaseEstimator | None = None,
) -> ExplanationTask:
    """Create an ExplanationTask from a list of datasets of different HPO tasks.

    Args:
        config_space: The configuration space.
        data_multidata: A list of tuples, where each tuple contains a configuration and its corresponding performance.
        base_model: The base model to use for training the surrogate model. Defaults to RandomForestRegressor.

    Returns:
        An ExplanationTask instance.

    """
    surrogate_model_list = [
        ExplanationTask.from_data(config_space, data, base_model).get_single_surrogate_model()
        for data in data_multidata
    ]
    return ExplanationTask(config_space=config_space, surrogate_model=surrogate_model_list)

from_function(config_space, function, n_samples=1000, base_model=None, seed=0) staticmethod

Create an ExplanationTask from a function that evaluates configurations.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
function Callable[[Configuration], float]

A callable that takes a configuration and returns its performance.

required
n_samples int

The number of configurations to sample for training the surrogate model. Defaults to 1000.

1000
base_model BaseEstimator | None

The base model to use for training the surrogate model. Defaults to RandomForestRegressor.

None
seed int | None

The seed for the random number generator, it is used to seed a deep copy of the config space.

0

Returns:

Type Description
ExplanationTask

An ExplanationTask instance.

Source code in src/hypershap/task.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
@staticmethod
def from_function(
    config_space: ConfigurationSpace,
    function: Callable[[Configuration], float],
    n_samples: int = 1_000,
    base_model: BaseEstimator | None = None,
    seed: int | None = 0,
) -> ExplanationTask:
    """Create an ExplanationTask from a function that evaluates configurations.

    Args:
        config_space: The configuration space.
        function: A callable that takes a configuration and returns its performance.
        n_samples: The number of configurations to sample for training the surrogate model. Defaults to 1000.
        base_model: The base model to use for training the surrogate model. Defaults to RandomForestRegressor.
        seed: The seed for the random number generator, it is used to seed a deep copy of the config space.

    Returns:
        An ExplanationTask instance.

    """
    cs = deepcopy(config_space)
    if seed is not None:
        cs.seed(seed)
    samples: list[Configuration] = cs.sample_configuration(n_samples)
    values: list[float] = [function(config) for config in samples]
    data: list[tuple[Configuration, float]] = list(zip(samples, values, strict=False))
    base_model = base_model if base_model is not None else RandomForestRegressor(random_state=seed)

    return ExplanationTask.from_data(config_space=cs, data=data, base_model=base_model)

from_function_multidata(config_space, functions, n_samples=1000, base_model=None) staticmethod

Create an ExplanationTask from a list of functions that evaluate configurations.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
functions list[Callable[[Configuration], float]]

A list of callables that take a configuration and returns its performance.

required
n_samples int

The number of configurations to sample for training the surrogate model. Defaults to 1000.

1000
base_model BaseEstimator | None

The base model to be used for training the surrogate model. Defaults to RandomForestRegressor.

None

Returns:

Type Description
ExplanationTask

An ExplanationTask instance.

Source code in src/hypershap/task.py
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
@staticmethod
def from_function_multidata(
    config_space: ConfigurationSpace,
    functions: list[Callable[[Configuration], float]],
    n_samples: int = 1_000,
    base_model: BaseEstimator | None = None,
) -> ExplanationTask:
    """Create an ExplanationTask from a list of functions that evaluate configurations.

    Args:
        config_space: The configuration space.
        functions: A list of callables that take a configuration and returns its performance.
        n_samples: The number of configurations to sample for training the surrogate model. Defaults to 1000.
        base_model: The base model to be used for training the surrogate model. Defaults to RandomForestRegressor.

    Returns:
        An ExplanationTask instance.

    """
    surrogate_model_list = [
        ExplanationTask.from_function(config_space, fun, n_samples, base_model).get_single_surrogate_model()
        for fun in functions
    ]
    return ExplanationTask(config_space=config_space, surrogate_model=surrogate_model_list)

get_hyperparameter_names()

Return the names of the hyperparameters in the configuration space.

Returns:

Type Description
list[str]

A list of hyperparameter names.

Source code in src/hypershap/task.py
87
88
89
90
91
92
93
94
def get_hyperparameter_names(self) -> list[str]:
    """Return the names of the hyperparameters in the configuration space.

    Returns:
        A list of hyperparameter names.

    """
    return list(self.config_space.keys())

get_num_hyperparameters()

Return the number of hyperparameters in the configuration space.

Returns:

Type Description
int

The number of hyperparameters.

Source code in src/hypershap/task.py
78
79
80
81
82
83
84
85
def get_num_hyperparameters(self) -> int:
    """Return the number of hyperparameters in the configuration space.

    Returns:
        The number of hyperparameters.

    """
    return len(self.config_space)

get_single_surrogate_model()

Return the surrogate model for the explanation task.

Returns:

Type Description
SurrogateModel

The surrogate model for the explanation task.

Source code in src/hypershap/task.py
54
55
56
57
58
59
60
61
62
63
64
def get_single_surrogate_model(self) -> SurrogateModel:
    """Return the surrogate model for the explanation task.

    Returns:
        The surrogate model for the explanation task.

    """
    if isinstance(self.surrogate_model, list):
        raise TypeError

    return self.surrogate_model

get_surrogate_model_list()

Return the list of surrogate models for the explanation task.

Returns:

Type Description
list[SurrogateModel]

The list of surrogate models for the explanation task.

Source code in src/hypershap/task.py
66
67
68
69
70
71
72
73
74
75
76
def get_surrogate_model_list(self) -> list[SurrogateModel]:
    """Return the list of surrogate models for the explanation task.

    Returns:
        The list of surrogate models for the explanation task.

    """
    if not isinstance(self.surrogate_model, list):
        raise TypeError

    return self.surrogate_model

is_multi_data()

Return if the explanation task is a multi-data task.

Returns:

Type Description
bool

True if the explanation task is a multi-data task.

Source code in src/hypershap/task.py
45
46
47
48
49
50
51
52
def is_multi_data(self) -> bool:
    """Return if the explanation task is a multi-data task.

    Returns:
        True if the explanation task is a multi-data task.

    """
    return isinstance(self.surrogate_model, list)

MistunabilityExplanationTask

Bases: BaselineExplanationTask

Defines a mistunability explanation task.

Source code in src/hypershap/task.py
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
class MistunabilityExplanationTask(BaselineExplanationTask):
    """Defines a mistunability explanation task."""

    def __init__(
        self,
        config_space: ConfigurationSpace,
        surrogate_model: SurrogateModel | list[SurrogateModel],
        baseline_config: Configuration,
    ) -> None:
        """Initialize a MistunabilityExplanationTask.

        Args:
            config_space: The configuration space.
            surrogate_model: The (list of) surrogate model(s) used for the explanation task.
            baseline_config: The baseline configuration.

        """
        super().__init__(config_space, surrogate_model, baseline_config)

__init__(config_space, surrogate_model, baseline_config)

Initialize a MistunabilityExplanationTask.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
surrogate_model SurrogateModel | list[SurrogateModel]

The (list of) surrogate model(s) used for the explanation task.

required
baseline_config Configuration

The baseline configuration.

required
Source code in src/hypershap/task.py
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
def __init__(
    self,
    config_space: ConfigurationSpace,
    surrogate_model: SurrogateModel | list[SurrogateModel],
    baseline_config: Configuration,
) -> None:
    """Initialize a MistunabilityExplanationTask.

    Args:
        config_space: The configuration space.
        surrogate_model: The (list of) surrogate model(s) used for the explanation task.
        baseline_config: The baseline configuration.

    """
    super().__init__(config_space, surrogate_model, baseline_config)

MultiBaselineAblationExplanationTask

Bases: MultiBaselineExplanationTask

Defines an ablation explanation task with multiple baseline configurations.

Source code in src/hypershap/task.py
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
class MultiBaselineAblationExplanationTask(MultiBaselineExplanationTask):
    """Defines an ablation explanation task with multiple baseline configurations."""

    def __init__(
        self,
        config_space: ConfigurationSpace,
        surrogate_model: SurrogateModel | list[SurrogateModel],
        baseline_configs: list[Configuration],
        config_of_interest: Configuration,
    ) -> None:
        """Initialize an MultiBaselineAblationExplanationTask with a list of baseline configurations.

        Args:
            config_space: The configuration space.
            surrogate_model: The (list of) surrogate model(s) used for the explanation task.
            baseline_configs: The baseline configurations.
            config_of_interest: The configuration of interest.

        """
        super().__init__(
            config_space,
            surrogate_model,
            baseline_configs,
        )
        self.config_of_interest = config_of_interest

__init__(config_space, surrogate_model, baseline_configs, config_of_interest)

Initialize an MultiBaselineAblationExplanationTask with a list of baseline configurations.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
surrogate_model SurrogateModel | list[SurrogateModel]

The (list of) surrogate model(s) used for the explanation task.

required
baseline_configs list[Configuration]

The baseline configurations.

required
config_of_interest Configuration

The configuration of interest.

required
Source code in src/hypershap/task.py
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def __init__(
    self,
    config_space: ConfigurationSpace,
    surrogate_model: SurrogateModel | list[SurrogateModel],
    baseline_configs: list[Configuration],
    config_of_interest: Configuration,
) -> None:
    """Initialize an MultiBaselineAblationExplanationTask with a list of baseline configurations.

    Args:
        config_space: The configuration space.
        surrogate_model: The (list of) surrogate model(s) used for the explanation task.
        baseline_configs: The baseline configurations.
        config_of_interest: The configuration of interest.

    """
    super().__init__(
        config_space,
        surrogate_model,
        baseline_configs,
    )
    self.config_of_interest = config_of_interest

MultiBaselineExplanationTask

Bases: ExplanationTask

Defines an explanation task with multiple baseline configurations.

Source code in src/hypershap/task.py
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
class MultiBaselineExplanationTask(ExplanationTask):
    """Defines an explanation task with multiple baseline configurations."""

    def __init__(
        self,
        config_space: ConfigurationSpace,
        surrogate_model: SurrogateModel | list[SurrogateModel],
        baseline_configs: list[Configuration],
    ) -> None:
        """Initialize a MultiBaselineExplanationTask with a list of baseline configurations.

        Args:
            config_space: The configuration space.
            surrogate_model: The (list of) surrogate model(s) used for the explanation task.
            baseline_configs: A list of baseline configurations.

        """
        super().__init__(config_space, surrogate_model)
        self.baseline_configs = baseline_configs

__init__(config_space, surrogate_model, baseline_configs)

Initialize a MultiBaselineExplanationTask with a list of baseline configurations.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
surrogate_model SurrogateModel | list[SurrogateModel]

The (list of) surrogate model(s) used for the explanation task.

required
baseline_configs list[Configuration]

A list of baseline configurations.

required
Source code in src/hypershap/task.py
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def __init__(
    self,
    config_space: ConfigurationSpace,
    surrogate_model: SurrogateModel | list[SurrogateModel],
    baseline_configs: list[Configuration],
) -> None:
    """Initialize a MultiBaselineExplanationTask with a list of baseline configurations.

    Args:
        config_space: The configuration space.
        surrogate_model: The (list of) surrogate model(s) used for the explanation task.
        baseline_configs: A list of baseline configurations.

    """
    super().__init__(config_space, surrogate_model)
    self.baseline_configs = baseline_configs

OptimizerBiasExplanationTask

Bases: ExplanationTask

Defines an optimizer bias explanation task.

Source code in src/hypershap/task.py
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
class OptimizerBiasExplanationTask(ExplanationTask):
    """Defines an optimizer bias explanation task."""

    def __init__(
        self,
        config_space: ConfigurationSpace,
        surrogate_model: SurrogateModel | list[SurrogateModel],
        optimizer_of_interest: ConfigSpaceSearcher,
        optimizer_ensemble: list[ConfigSpaceSearcher],
    ) -> None:
        """Initialize an OptimizerBiasExplanationTask.

        Args:
            config_space: The configuration space.
            surrogate_model: The (list of) surrogate model(s) used for the explanation task.
            optimizer_of_interest: The optimizer of interest.
            optimizer_ensemble: The ensemble of optimizers.

        """
        super().__init__(config_space, surrogate_model)
        self.optimizer_of_interest = optimizer_of_interest
        self.optimizer_ensemble = optimizer_ensemble

__init__(config_space, surrogate_model, optimizer_of_interest, optimizer_ensemble)

Initialize an OptimizerBiasExplanationTask.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
surrogate_model SurrogateModel | list[SurrogateModel]

The (list of) surrogate model(s) used for the explanation task.

required
optimizer_of_interest ConfigSpaceSearcher

The optimizer of interest.

required
optimizer_ensemble list[ConfigSpaceSearcher]

The ensemble of optimizers.

required
Source code in src/hypershap/task.py
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
def __init__(
    self,
    config_space: ConfigurationSpace,
    surrogate_model: SurrogateModel | list[SurrogateModel],
    optimizer_of_interest: ConfigSpaceSearcher,
    optimizer_ensemble: list[ConfigSpaceSearcher],
) -> None:
    """Initialize an OptimizerBiasExplanationTask.

    Args:
        config_space: The configuration space.
        surrogate_model: The (list of) surrogate model(s) used for the explanation task.
        optimizer_of_interest: The optimizer of interest.
        optimizer_ensemble: The ensemble of optimizers.

    """
    super().__init__(config_space, surrogate_model)
    self.optimizer_of_interest = optimizer_of_interest
    self.optimizer_ensemble = optimizer_ensemble

SensitivityExplanationTask

Bases: BaselineExplanationTask

Defines a sensitivity explanation task.

Source code in src/hypershap/task.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
class SensitivityExplanationTask(BaselineExplanationTask):
    """Defines a sensitivity explanation task."""

    def __init__(
        self,
        config_space: ConfigurationSpace,
        surrogate_model: SurrogateModel | list[SurrogateModel],
        baseline_config: Configuration,
    ) -> None:
        """Initialize a SensitivityExplanationTask.

        Args:
            config_space: The configuration space.
            surrogate_model: The (list of) surrogate model(s) used for the explanation task.
            baseline_config: The baseline configuration.

        """
        super().__init__(config_space, surrogate_model, baseline_config)

__init__(config_space, surrogate_model, baseline_config)

Initialize a SensitivityExplanationTask.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
surrogate_model SurrogateModel | list[SurrogateModel]

The (list of) surrogate model(s) used for the explanation task.

required
baseline_config Configuration

The baseline configuration.

required
Source code in src/hypershap/task.py
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def __init__(
    self,
    config_space: ConfigurationSpace,
    surrogate_model: SurrogateModel | list[SurrogateModel],
    baseline_config: Configuration,
) -> None:
    """Initialize a SensitivityExplanationTask.

    Args:
        config_space: The configuration space.
        surrogate_model: The (list of) surrogate model(s) used for the explanation task.
        baseline_config: The baseline configuration.

    """
    super().__init__(config_space, surrogate_model, baseline_config)

TunabilityExplanationTask

Bases: BaselineExplanationTask

Defines a tunability explanation task.

Source code in src/hypershap/task.py
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
class TunabilityExplanationTask(BaselineExplanationTask):
    """Defines a tunability explanation task."""

    def __init__(
        self,
        config_space: ConfigurationSpace,
        surrogate_model: SurrogateModel | list[SurrogateModel],
        baseline_config: Configuration,
    ) -> None:
        """Initialize a TunabilityExplanationTask.

        Args:
            config_space: The configuration space.
            surrogate_model: The (list of) surrogate model(s) used for the explanation task.
            baseline_config: The baseline configuration.

        """
        super().__init__(config_space, surrogate_model, baseline_config)

__init__(config_space, surrogate_model, baseline_config)

Initialize a TunabilityExplanationTask.

Parameters:

Name Type Description Default
config_space ConfigurationSpace

The configuration space.

required
surrogate_model SurrogateModel | list[SurrogateModel]

The (list of) surrogate model(s) used for the explanation task.

required
baseline_config Configuration

The baseline configuration.

required
Source code in src/hypershap/task.py
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
def __init__(
    self,
    config_space: ConfigurationSpace,
    surrogate_model: SurrogateModel | list[SurrogateModel],
    baseline_config: Configuration,
) -> None:
    """Initialize a TunabilityExplanationTask.

    Args:
        config_space: The configuration space.
        surrogate_model: The (list of) surrogate model(s) used for the explanation task.
        baseline_config: The baseline configuration.

    """
    super().__init__(config_space, surrogate_model, baseline_config)