Source code for hpbandster.visualization

import copy

import numpy as np
import scipy.stats as sps
import matplotlib.pyplot as plt
from matplotlib.widgets import CheckButtons,Button



[docs]def default_tool_tips(result_object, learning_curves, include_run_info=False): tool_tips = {} id2conf = result_object.get_id2config_mapping() for id in learning_curves.keys(): config = id2conf[id]['config'] config_info = id2conf[id]['config_info'] all_runs = result_object.get_runs_by_id(id) if len(all_runs) == 0: continue longest_run = all_runs[-1] while longest_run.loss is None: all_runs.pop() if len(all_runs) == 0: break longest_run = all_runs[-1] if len(all_runs) == 0: continue s = ['id: %s'%str(id), 'duration (sec): %f'%((longest_run['time_stamps']['finished'] - longest_run['time_stamps']['started']))] if not longest_run.loss is None: s += [str(k) + "=" +str(v) for k,v in sorted(id2conf[id]['config'].items()) ] try: s += [str(k) + "=" +str(v) for k,v in sorted(id2conf[id]['config_info'].items()) ] except: pass s += ['losses: {}'.format([r.loss for r in all_runs])] if include_run_info: s += ['longest run info: {}'.format(longest_run.info)] tool_tips[id] = "\n".join(s) return(tool_tips)
[docs]def concurrent_runs_over_time(runs, num_points = 512, show=False): data = np.array([(r.time_stamps['started'], r.time_stamps['finished']) for r in runs]) ts = np.linspace(data.min(), data.max(), 512) n_workers = np.array([ ((data[:,0] <= t)*(data[:,1]>t)).sum() for t in ts]) fig, ax = plt.subplots() ax.plot(ts, n_workers) ax.set_xlabel('time [s]') ax.set_ylabel('number of concurent runs') if show: plt.show() return(fig, ax)
[docs]def finished_runs_over_time(runs, show=False): budgets = set([r.budget for r in runs]) times = {} for b in budgets: times[b] = [0] for r in runs: times[r.budget].append(r.time_stamps['finished']) for b in budgets: times[b].sort() fig, ax = plt.subplots() for b in budgets: ax.plot(times[b], np.arange(len(times[b])), label='b = %f'%b) ax.set_xlabel('time [s]') ax.set_ylabel('number of finished runs') ax.legend() if show: plt.show() return(fig,ax)
[docs]def performance_histogram_model_vs_random(runs, id2conf, show=False): model_based_runs = list(filter(lambda r: id2conf[r.config_id]['config_info']['model_based_pick'], runs)) random_runs = list(filter(lambda r: not id2conf[r.config_id]['config_info']['model_based_pick'], runs)) budgets = list(set([r.budget for r in runs])) budgets.sort() losses = {} for b in budgets: losses[b] = {'model_based': [], 'random': []} for r in model_based_runs: if r.loss is None or not np.isfinite(r.loss): continue losses[r.budget]['model_based'].append(r.loss) for r in random_runs: if r.loss is None or not np.isfinite(r.loss): continue losses[r.budget]['random'].append(r.loss) fig, axarr = plt.subplots(len(budgets), 2, sharey='row', sharex='row') plt.suptitle('Loss of model based configurations (left) vs. random configuration (right)') for i,b in enumerate(budgets): mbax, rax = axarr[i] mbax.hist(losses[b]['model_based'], label='b = %f \n n = %i'%(b,len(losses[b]['model_based']))) mbax.set_ylabel('frequency') mbax.legend() rax.hist(losses[b]['random'],label='b = %f \n n = %i'%(b,len(losses[b]['random']))) rax.legend() if i == len(budgets)-1: mbax.set_xlabel('loss') rax.set_xlabel('loss') if show: plt.show() return(fig, axarr)
[docs]def correlation_across_budgets(results_object, show=False): runs = results_object.get_all_runs() id2conf = results_object.get_id2config_mapping() budgets = list(set([r.budget for r in runs])) budgets.sort() import itertools loss_pairs = {} for b in budgets[:-1]: loss_pairs[b] = {} for b1,b2 in itertools.combinations(budgets, 2): loss_pairs[b1][b2]= [] for cid in id2conf.keys(): runs = results_object.get_runs_by_id(cid) if len(runs) < 2: continue for r1,r2 in itertools.combinations(runs,2): if r1.loss is None or r2.loss is None: continue if not np.isfinite(r1.loss) or not np.isfinite(r2.loss): continue loss_pairs[float(r1.budget)][float(r2.budget)].append((r1.loss, r2.loss)) rhos = np.eye(len(budgets)-1) rhos.fill(np.nan) ps = np.eye(len(budgets)-1) ps.fill(np.nan) for i in range(len(budgets)-1): for j in range(i+1,len(budgets)): spr = sps.spearmanr(loss_pairs[budgets[i]][budgets[j]]) rhos[i][j-1] = spr.correlation ps[i][j-1] = spr.pvalue fig, ax = plt.subplots() cax = ax.matshow(rhos, vmin=-1, vmax=1) fig.colorbar(cax) ax.set_yticks( range(len(budgets)-1)) ax.set_yticklabels(budgets[:-1],) ax.set_xticks( range(len(budgets)-1)) ax.set_xticklabels(budgets[1:],) ax.set_title('Rank correlation of the loss across the budgets') for i in range(len(budgets)-1): for j in range(i+1,len(budgets)): plt.text(j-1,i, r'$\rho_{spearman}= %f$'%rhos[i][j-1] + '\n' + r'$p = %f$'%ps[i][j-1] + '\n' + r'$n = %i$'%len(loss_pairs[budgets[i]][budgets[j]]), horizontalalignment='center', verticalalignment='center') if show: plt.show() return(fig,ax)
[docs]def losses_over_time(runs, get_loss_from_run_fn = lambda r: r.loss, cmap = plt.get_cmap("tab10"), show=False): budgets = set([r.budget for r in runs]) data = {} for b in budgets: data[b] = [] for r in runs: if r.loss is None: continue b = r.budget t = r.time_stamps['finished'] l = get_loss_from_run_fn(r) data[b].append((t,l)) for b in budgets: data[b].sort() fig, ax = plt.subplots() for i, b in enumerate(budgets): data[b] = np.array(data[b]) ax.scatter(data[b][:,0], data[b][:,1], color=cmap(i), label='b=%f'%b) ax.step(data[b][:,0], np.minimum.accumulate(data[b][:,1]), where='post') ax.set_title('Losses for different budgets over time') ax.set_xlabel('wall clock time [s]') ax.set_ylabel('loss') ax.legend() if show: plt.show() return(fig,ax)
[docs]def interactive_HBS_plot(learning_curves, tool_tip_strings=None,log_y=False, log_x=False, reset_times=False, color_map='Set3', colors_floats=None, title='', show=True): times, losses, config_ids, = [], [], [] for k,v in learning_curves.items(): for l in v: if len(l) == 0: continue tmp = list(zip(*l)) try: times.append(tmp[0]) losses.append(tmp[1]) config_ids.append(k) except: import pdb; pdb.set_trace() num_curves = len(times) HB_iterations = [id[0] for id in config_ids] num_iterations = len(set(HB_iterations)) cmap = plt.get_cmap(color_map) if reset_times: times = [np.array(ts) - ts[0] for ts in times] if colors_floats is None: color_floats = [] for i in range(num_curves): seed = 100*np.abs(config_ids[i][0]) + 10*config_ids[i][1] + config_ids[i][2] np.random.seed(seed) color_floats.append(np.random.rand()) fig, ax = plt.subplots() lines = [[] for i in range(num_iterations)] iteration_labels = list(range(num_iterations)) if HB_iterations[-1] == -1: iteration_labels[-1] = 'warmstart data' all_lines = [] for i in range(num_curves): l, = ax.plot(times[i], losses[i], color=cmap(color_floats[i]), marker='o', gid=i, picker=True) lines[HB_iterations[i]].append(l) all_lines.append(l) if log_y: plt.yscale('log') ax.set_title(title) hover_annotation = ax.annotate("BLABLA", xy=(0,0), xytext=(20,20),textcoords="offset points", bbox=dict(boxstyle="round", fc="w"), arrowprops=dict(arrowstyle="->")) hover_annotation.set_visible(False) permanent_annotations = {} plt.subplots_adjust(left=0.2) rax = plt.axes([0.05, 0.1, 0.1, 0.8]) axnone = plt.axes([0.05, 0, 0.05, 0.1]) axall = plt.axes([0.1, 0, 0.05 , 0.1]) check = CheckButtons(rax, iteration_labels, [True for i in range(num_iterations)]) none_button = Button(axnone, 'None') all_button = Button(axall, 'All') def change_visibility(label, value=None): if label == 'warmstart data': index = -1 else: index = int(label) if value is None: value = not lines[index][0].get_visible() [l.set_visible(value) for l in lines[index]] plt.draw() def show_all(event): for label in range(num_iterations): if not lines[label][0].get_visible(): change_visibility(label, False) check.set_active(label) def hide_all(event): for label in range(num_iterations): if lines[label][0].get_visible(): change_visibility(label, True) check.set_active(label) check.on_clicked(change_visibility) none_button.on_clicked(hide_all) all_button.on_clicked(show_all) def update_hover_annotation(line, annotation=hover_annotation): xdata = line.get_xdata() ydata = line.get_ydata() idx = line.get_gid() annotation.xy = (xdata[-1], ydata[-1]) if not tool_tip_strings is None: annotation.set_text(tool_tip_strings[config_ids[idx]]) else: annotation.set_text(str(config_ids[idx])) fig.canvas.draw_idle() def onpick1(event): line = event.artist if not line in all_lines: return gid = line.get_gid() if gid in permanent_annotations: # remove permanent annotation permanent_annotations[gid].set_visible(False) del permanent_annotations[gid] fig.canvas.draw_idle() else: # add a new annotation xdata = line.get_xdata() ydata = line.get_ydata() idx = line.get_gid() if not tool_tip_strings is None: text = tool_tip_strings[config_ids[idx]] else: text = str(config_ids[idx]) permanent_annotations[gid] = ax.annotate(text, copy.deepcopy((xdata[-1],ydata[-1])), xytext=(20,20),textcoords="offset points", bbox=dict(boxstyle="round", fc="w", linewidth=3), arrowprops=dict(arrowstyle="->")) permanent_annotations[gid].draggable() fig.canvas.draw_idle() def hover(event): vis = hover_annotation.get_visible() if event.inaxes == ax: active_lines = list(filter(lambda l: l.contains(event)[0], all_lines)) if len(active_lines) > 0: hover_annotation.set_visible(True) update_hover_annotation(active_lines[0]) elif vis: hover_annotation.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect('pick_event', onpick1) fig.canvas.mpl_connect("motion_notify_event", hover) if show: plt.show() return(fig, ax, check, none_button, all_button)