Source code for hpbandster.optimizers.hyperband

import os
import time
import math
import pdb
import copy
import logging

import numpy as np


import ConfigSpace as CS

from hpbandster.core.master import Master
from hpbandster.optimizers.iterations import SuccessiveHalving
from hpbandster.optimizers.config_generators import RandomSampling

[docs]class HyperBand(Master): def __init__(self, configspace = None, eta=3, min_budget=0.01, max_budget=1, **kwargs ): """ Hyperband implements hyperparameter optimization by sampling candidates at random and "trying" them first, running them for a specific budget. The approach is iterative, promising candidates are run for a longer time, increasing the fidelity for their performance. While this is a very efficient racing approach, random sampling makes no use of the knowledge gained about the candidates during optimization. Parameters ---------- configspace: ConfigSpace object valid representation of the search space eta : float In each iteration, a complete run of sequential halving is executed. In it, after evaluating each configuration on the same subset size, only a fraction of 1/eta of them 'advances' to the next round. Must be greater or equal to 2. min_budget : float The smallest budget to consider. Needs to be positive! max_budget : float the largest budget to consider. Needs to be larger than min_budget! The budgets will be geometrically distributed $\sim \eta^k$ for $k\in [0, 1, ... , num_subsets - 1]$. """ # TODO: Propper check for ConfigSpace object! if configspace is None: raise ValueError("You have to provide a valid CofigSpace object") super().__init__(config_generator=RandomSampling(configspace), **kwargs) # Hyperband related stuff self.eta = eta self.min_budget = min_budget self.max_budget = max_budget # precompute some HB stuff self.max_SH_iter = -int(np.log(min_budget/max_budget)/np.log(eta)) + 1 self.budgets = max_budget * np.power(eta, -np.linspace(self.max_SH_iter-1, 0, self.max_SH_iter)) self.config.update({ 'eta' : eta, 'min_budget' : min_budget, 'max_budget' : max_budget, 'budgets' : self.budgets, 'max_SH_iter': self.max_SH_iter, })
[docs] def get_next_iteration(self, iteration, iteration_kwargs={}): """ Hyperband uses SuccessiveHalving for each iteration. See Li et al. (2016) for reference. Parameters ---------- iteration: int the index of the iteration to be instantiated Returns ------- SuccessiveHalving: the SuccessiveHalving iteration with the corresponding number of configurations """ # number of 'SH rungs' s = self.max_SH_iter - 1 - (iteration%self.max_SH_iter) # number of configurations in that bracket n0 = int(np.floor((self.max_SH_iter)/(s+1)) * self.eta**s) ns = [max(int(n0*(self.eta**(-i))), 1) for i in range(s+1)] return(SuccessiveHalving(HPB_iter=iteration, num_configs=ns, budgets=self.budgets[(-s-1):], config_sampler=self.config_generator.get_config, **iteration_kwargs))