Source code for hpbandster.optimizers.bohb

import os
import time
import math
import copy
import logging

import numpy as np


import ConfigSpace as CS

from hpbandster.core.master import Master
from hpbandster.optimizers.iterations import SuccessiveHalving
from hpbandster.optimizers.config_generators.bohb import BOHB as CG_BOHB

[docs]class BOHB(Master): def __init__(self, configspace = None, eta=3, min_budget=0.01, max_budget=1, min_points_in_model = None, top_n_percent=15, num_samples = 64, random_fraction=1/3, bandwidth_factor=3, min_bandwidth=1e-3, **kwargs ): """ BOHB performs robust and efficient hyperparameter optimization at scale by combining the speed of Hyperband searches with the guidance and guarantees of convergence of Bayesian Optimization. Instead of sampling new configurations at random, BOHB uses kernel density estimators to select promising candidates. .. highlight:: none For reference: :: @InProceedings{falkner-icml-18, title = {{BOHB}: Robust and Efficient Hyperparameter Optimization at Scale}, author = {Falkner, Stefan and Klein, Aaron and Hutter, Frank}, booktitle = {Proceedings of the 35th International Conference on Machine Learning}, pages = {1436--1445}, year = {2018}, } Parameters ---------- configspace: ConfigSpace object valid representation of the search space eta : float In each iteration, a complete run of sequential halving is executed. In it, after evaluating each configuration on the same subset size, only a fraction of 1/eta of them 'advances' to the next round. Must be greater or equal to 2. min_budget : float The smallest budget to consider. Needs to be positive! max_budget : float The largest budget to consider. Needs to be larger than min_budget! The budgets will be geometrically distributed :math:`a^2 + b^2 = c^2 \sim \eta^k` for :math:`k\in [0, 1, ... , num\_subsets - 1]`. min_points_in_model: int number of observations to start building a KDE. Default 'None' means dim+1, the bare minimum. top_n_percent: int percentage ( between 1 and 99, default 15) of the observations that are considered good. num_samples: int number of samples to optimize EI (default 64) random_fraction: float fraction of purely random configurations that are sampled from the prior without the model. bandwidth_factor: float to encourage diversity, the points proposed to optimize EI, are sampled from a 'widened' KDE where the bandwidth is multiplied by this factor (default: 3) min_bandwidth: float to keep diversity, even when all (good) samples have the same value for one of the parameters, a minimum bandwidth (Default: 1e-3) is used instead of zero. iteration_kwargs: dict kwargs to be added to the instantiation of each iteration """ # TODO: Propper check for ConfigSpace object! if configspace is None: raise ValueError("You have to provide a valid CofigSpace object") cg = CG_BOHB( configspace = configspace, min_points_in_model = min_points_in_model, top_n_percent=top_n_percent, num_samples = num_samples, random_fraction=random_fraction, bandwidth_factor=bandwidth_factor, min_bandwidth = min_bandwidth ) super().__init__(config_generator=cg, **kwargs) # Hyperband related stuff self.eta = eta self.min_budget = min_budget self.max_budget = max_budget # precompute some HB stuff self.max_SH_iter = -int(np.log(min_budget/max_budget)/np.log(eta)) + 1 self.budgets = max_budget * np.power(eta, -np.linspace(self.max_SH_iter-1, 0, self.max_SH_iter)) self.config.update({ 'eta' : eta, 'min_budget' : min_budget, 'max_budget' : max_budget, 'budgets' : self.budgets, 'max_SH_iter': self.max_SH_iter, 'min_points_in_model' : min_points_in_model, 'top_n_percent' : top_n_percent, 'num_samples' : num_samples, 'random_fraction' : random_fraction, 'bandwidth_factor' : bandwidth_factor, 'min_bandwidth': min_bandwidth })
[docs] def get_next_iteration(self, iteration, iteration_kwargs={}): """ BO-HB uses (just like Hyperband) SuccessiveHalving for each iteration. See Li et al. (2016) for reference. Parameters ---------- iteration: int the index of the iteration to be instantiated Returns ------- SuccessiveHalving: the SuccessiveHalving iteration with the corresponding number of configurations """ # number of 'SH rungs' s = self.max_SH_iter - 1 - (iteration%self.max_SH_iter) # number of configurations in that bracket n0 = int(np.floor((self.max_SH_iter)/(s+1)) * self.eta**s) ns = [max(int(n0*(self.eta**(-i))), 1) for i in range(s+1)] return(SuccessiveHalving(HPB_iter=iteration, num_configs=ns, budgets=self.budgets[(-s-1):], config_sampler=self.config_generator.get_config, **iteration_kwargs))