import os
import uuid
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import pandas as pd
from autoPyTorch.api.base_task import BaseTask
from autoPyTorch.constants import (
TABULAR_CLASSIFICATION,
TASK_TYPES_TO_STRING,
)
from autoPyTorch.data.tabular_validator import TabularInputValidator
from autoPyTorch.datasets.base_dataset import BaseDataset
from autoPyTorch.datasets.resampling_strategy import (
CrossValTypes,
HoldoutValTypes,
)
from autoPyTorch.datasets.tabular_dataset import TabularDataset
from autoPyTorch.pipeline.tabular_classification import TabularClassificationPipeline
from autoPyTorch.utils.backend import Backend
from autoPyTorch.utils.hyperparameter_search_space_update import HyperparameterSearchSpaceUpdates
[docs]class TabularClassificationTask(BaseTask):
"""
Tabular Classification API to the pipelines.
Args:
seed (int):
seed to be used for reproducibility.
n_jobs (int), (default=1):
number of consecutive processes to spawn.
logging_config (Optional[Dict]):
specifies configuration for logging, if None, it is loaded from the logging.yaml
ensemble_size (int), (default=50):
Number of models added to the ensemble built by
Ensemble selection from libraries of models.
Models are drawn with replacement.
ensemble_nbest (int), (default=50):
only consider the ensemble_nbest
models to build the ensemble
max_models_on_disc (int), (default=50):
maximum number of models saved to disc.
Also, controls the size of the ensemble as any additional models will be deleted.
Must be greater than or equal to 1.
temporary_directory (str):
folder to store configuration output and log file
output_directory (str):
folder to store predictions for optional test set
delete_tmp_folder_after_terminate (bool):
determines whether to delete the temporary directory, when finished
include_components (Optional[Dict]):
If None, all possible components are used. Otherwise
specifies set of components to use.
exclude_components (Optional[Dict]):
If None, all possible components are used. Otherwise
specifies set of components not to use. Incompatible
with include components
"""
def __init__(
self,
seed: int = 1,
n_jobs: int = 1,
logging_config: Optional[Dict] = None,
ensemble_size: int = 50,
ensemble_nbest: int = 50,
max_models_on_disc: int = 50,
temporary_directory: Optional[str] = None,
output_directory: Optional[str] = None,
delete_tmp_folder_after_terminate: bool = True,
delete_output_folder_after_terminate: bool = True,
include_components: Optional[Dict] = None,
exclude_components: Optional[Dict] = None,
resampling_strategy: Union[CrossValTypes, HoldoutValTypes] = HoldoutValTypes.holdout_validation,
resampling_strategy_args: Optional[Dict[str, Any]] = None,
backend: Optional[Backend] = None,
search_space_updates: Optional[HyperparameterSearchSpaceUpdates] = None
):
super().__init__(
seed=seed,
n_jobs=n_jobs,
logging_config=logging_config,
ensemble_size=ensemble_size,
ensemble_nbest=ensemble_nbest,
max_models_on_disc=max_models_on_disc,
temporary_directory=temporary_directory,
output_directory=output_directory,
delete_tmp_folder_after_terminate=delete_tmp_folder_after_terminate,
delete_output_folder_after_terminate=delete_output_folder_after_terminate,
include_components=include_components,
exclude_components=exclude_components,
backend=backend,
resampling_strategy=resampling_strategy,
resampling_strategy_args=resampling_strategy_args,
search_space_updates=search_space_updates,
task_type=TASK_TYPES_TO_STRING[TABULAR_CLASSIFICATION],
)
def _get_required_dataset_properties(self, dataset: BaseDataset) -> Dict[str, Any]:
if not isinstance(dataset, TabularDataset):
raise ValueError("Dataset is incompatible for the given task,: {}".format(
type(dataset)
))
return {'task_type': dataset.task_type,
'output_type': dataset.output_type,
'issparse': dataset.issparse,
'numerical_columns': dataset.numerical_columns,
'categorical_columns': dataset.categorical_columns}
[docs] def build_pipeline(self, dataset_properties: Dict[str, Any]) -> TabularClassificationPipeline:
return TabularClassificationPipeline(dataset_properties=dataset_properties)
[docs] def search(
self,
optimize_metric: str,
X_train: Optional[Union[List, pd.DataFrame, np.ndarray]] = None,
y_train: Optional[Union[List, pd.DataFrame, np.ndarray]] = None,
X_test: Optional[Union[List, pd.DataFrame, np.ndarray]] = None,
y_test: Optional[Union[List, pd.DataFrame, np.ndarray]] = None,
dataset_name: Optional[str] = None,
budget_type: Optional[str] = None,
budget: Optional[float] = None,
total_walltime_limit: int = 100,
func_eval_time_limit_secs: Optional[int] = None,
enable_traditional_pipeline: bool = True,
memory_limit: Optional[int] = 4096,
smac_scenario_args: Optional[Dict[str, Any]] = None,
get_smac_object_callback: Optional[Callable] = None,
all_supported_metrics: bool = True,
precision: int = 32,
disable_file_output: List = [],
load_models: bool = True,
) -> 'BaseTask':
"""
Search for the best pipeline configuration for the given dataset.
Fit both optimizes the machine learning models and builds an ensemble out of them.
To disable ensembling, set ensemble_size==0.
using the optimizer.
Args:
X_train, y_train, X_test, y_test: Union[np.ndarray, List, pd.DataFrame]
A pair of features (X_train) and targets (y_train) used to fit a
pipeline. Additionally, a holdout of this pairs (X_test, y_test) can
be provided to track the generalization performance of each stage.
optimize_metric (str): name of the metric that is used to
evaluate a pipeline.
budget_type (Optional[str]):
Type of budget to be used when fitting the pipeline.
Either 'epochs' or 'runtime'. If not provided, uses
the default in the pipeline config ('epochs')
budget (Optional[float]):
Budget to fit a single run of the pipeline. If not
provided, uses the default in the pipeline config
total_walltime_limit (int), (default=100): Time limit
in seconds for the search of appropriate models.
By increasing this value, autopytorch has a higher
chance of finding better models.
func_eval_time_limit_secs (int), (default=None): Time limit
for a single call to the machine learning model.
Model fitting will be terminated if the machine
learning algorithm runs over the time limit. Set
this value high enough so that typical machine
learning algorithms can be fit on the training
data.
When set to None, this time will automatically be set to
total_walltime_limit // 2 to allow enough time to fit
at least 2 individual machine learning algorithms.
Set to np.inf in case no time limit is desired.
enable_traditional_pipeline (bool), (default=True):
We fit traditional machine learning algorithms
(LightGBM, CatBoost, RandomForest, ExtraTrees, KNN, SVM)
before building PyTorch Neural Networks. You can disable this
feature by turning this flag to False. All machine learning
algorithms that are fitted during search() are considered for
ensemble building.
memory_limit (Optional[int]), (default=4096): Memory
limit in MB for the machine learning algorithm. autopytorch
will stop fitting the machine learning algorithm if it tries
to allocate more than memory_limit MB. If None is provided,
no memory limit is set. In case of multi-processing, memory_limit
will be per job. This memory limit also applies to the ensemble
creation process.
smac_scenario_args (Optional[Dict]): Additional arguments inserted
into the scenario of SMAC. See the
[SMAC documentation] (https://automl.github.io/SMAC3/master/options.html?highlight=scenario#scenario)
get_smac_object_callback (Optional[Callable]): Callback function
to create an object of class
[smac.optimizer.smbo.SMBO](https://automl.github.io/SMAC3/master/apidoc/smac.optimizer.smbo.html).
The function must accept the arguments scenario_dict,
instances, num_params, runhistory, seed and ta. This is
an advanced feature. Use only if you are familiar with
[SMAC](https://automl.github.io/SMAC3/master/index.html).
all_supported_metrics (bool), (default=True): if True, all
metrics supporting current task will be calculated
for each pipeline and results will be available via cv_results
precision (int), (default=32): Numeric precision used when loading
ensemble data. Can be either '16', '32' or '64'.
disable_file_output (Union[bool, List]):
load_models (bool), (default=True): Whether to load the
models after fitting AutoPyTorch.
Returns:
self
"""
if dataset_name is None:
dataset_name = str(uuid.uuid1(clock_seq=os.getpid()))
# we have to create a logger for at this point for the validator
self._logger = self._get_logger(dataset_name)
# Create a validator object to make sure that the data provided by
# the user matches the autopytorch requirements
self.InputValidator = TabularInputValidator(
is_classification=True,
logger_port=self._logger_port,
)
# Fit a input validator to check the provided data
# Also, an encoder is fit to both train and test data,
# to prevent unseen categories during inference
self.InputValidator.fit(X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test)
self.dataset = TabularDataset(
X=X_train, Y=y_train,
X_test=X_test, Y_test=y_test,
validator=self.InputValidator,
resampling_strategy=self.resampling_strategy,
resampling_strategy_args=self.resampling_strategy_args,
)
return self._search(
dataset=self.dataset,
optimize_metric=optimize_metric,
budget_type=budget_type,
budget=budget,
total_walltime_limit=total_walltime_limit,
func_eval_time_limit_secs=func_eval_time_limit_secs,
enable_traditional_pipeline=enable_traditional_pipeline,
memory_limit=memory_limit,
smac_scenario_args=smac_scenario_args,
get_smac_object_callback=get_smac_object_callback,
all_supported_metrics=all_supported_metrics,
precision=precision,
disable_file_output=disable_file_output,
load_models=load_models,
)
[docs] def predict(
self,
X_test: np.ndarray,
batch_size: Optional[int] = None,
n_jobs: int = 1
) -> np.ndarray:
if self.InputValidator is None or not self.InputValidator._is_fitted:
raise ValueError("predict() is only supported after calling search. Kindly call first "
"the estimator fit() method.")
X_test = self.InputValidator.feature_validator.transform(X_test)
predicted_probabilities = super().predict(X_test, batch_size=batch_size,
n_jobs=n_jobs)
if self.InputValidator.target_validator.is_single_column_target():
predicted_indexes = np.argmax(predicted_probabilities, axis=1)
else:
predicted_indexes = (predicted_probabilities > 0.5).astype(int)
# Allow to predict in the original domain -- that is, the user is not interested
# in our encoded values
return self.InputValidator.target_validator.inverse_transform(predicted_indexes)
def predict_proba(self,
X_test: Union[np.ndarray, pd.DataFrame, List],
batch_size: Optional[int] = None, n_jobs: int = 1) -> np.ndarray:
if self.InputValidator is None or not self.InputValidator._is_fitted:
raise ValueError("predict() is only supported after calling search. Kindly call first "
"the estimator fit() method.")
X_test = self.InputValidator.feature_validator.transform(X_test)
return super().predict(X_test, batch_size=batch_size, n_jobs=n_jobs)