.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/40_advanced/example_visualization.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_40_advanced_example_visualization.py: ======================= Visualizing the Results ======================= Auto-Pytorch uses SMAC to fit individual machine learning algorithms and then ensembles them together using `Ensemble Selection `_. The following examples shows how to visualize both the performance of the individual models and their respective ensemble. Additionally, as we are compatible with scikit-learn, we show how to further interact with `Scikit-Learn Inspection `_ support. .. GENERATED FROM PYTHON SOURCE LINES 19-53 .. code-block:: default import os import pickle import tempfile as tmp import time import warnings # The following variables are not needed for every unix distribution, but are # highlighted in here to prevent problems with multiprocessing with scikit-learn. os.environ['JOBLIB_TEMP_FOLDER'] = tmp.gettempdir() os.environ['OMP_NUM_THREADS'] = '1' os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' warnings.simplefilter(action='ignore', category=UserWarning) warnings.simplefilter(action='ignore', category=FutureWarning) import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.datasets import sklearn.model_selection from sklearn.inspection import permutation_importance from smac.tae import StatusType from autoPyTorch.api.tabular_classification import TabularClassificationTask from autoPyTorch.metrics import accuracy .. GENERATED FROM PYTHON SOURCE LINES 54-56 Data Loading ============ .. GENERATED FROM PYTHON SOURCE LINES 56-66 .. code-block:: default # We will use the iris dataset for this Toy example seed = 42 X, y = sklearn.datasets.fetch_openml(data_id=61, return_X_y=True, as_frame=True) X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split( X, y, random_state=42, ) .. GENERATED FROM PYTHON SOURCE LINES 67-69 Build and fit a classifier ========================== .. GENERATED FROM PYTHON SOURCE LINES 69-80 .. code-block:: default api = TabularClassificationTask(seed=seed) api.search( X_train=X_train, y_train=y_train, X_test=X_test.copy(), y_test=y_test.copy(), optimize_metric=accuracy.name, total_walltime_limit=200, func_eval_time_limit_secs=50 ) .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 81-83 One can also save the model for future inference ================================================ .. GENERATED FROM PYTHON SOURCE LINES 83-94 .. code-block:: default # For more details on how to deploy a model, please check # `Scikit-Learn persistence # `_ support. with open('estimator.pickle', 'wb') as handle: pickle.dump(api, handle, protocol=pickle.HIGHEST_PROTOCOL) # Then let us read it back and use it for our analysis with open('estimator.pickle', 'rb') as handle: estimator = pickle.load(handle) .. GENERATED FROM PYTHON SOURCE LINES 95-97 Plotting the model performance ============================== .. GENERATED FROM PYTHON SOURCE LINES 97-152 .. code-block:: default # We will plot the search incumbent through time. # Collect the performance of individual machine learning algorithms # found by SMAC individual_performances = [] for run_key, run_value in estimator.run_history.data.items(): if run_value.status != StatusType.SUCCESS: # Ignore crashed runs continue individual_performances.append({ 'Timestamp': pd.Timestamp( time.strftime( '%Y-%m-%d %H:%M:%S', time.localtime(run_value.endtime) ) ), 'single_best_optimization_accuracy': accuracy._optimum - run_value.cost, 'single_best_test_accuracy': np.nan if run_value.additional_info is None else accuracy._optimum - run_value.additional_info['test_loss']['accuracy'], }) individual_performance_frame = pd.DataFrame(individual_performances) # Collect the performance of the ensemble through time # This ensemble is built from the machine learning algorithms # found by SMAC ensemble_performance_frame = pd.DataFrame(estimator.ensemble_performance_history) # As we are tracking the incumbent, we are interested in the cummax() performance ensemble_performance_frame['ensemble_optimization_accuracy'] = ensemble_performance_frame[ 'train_accuracy' ].cummax() ensemble_performance_frame['ensemble_test_accuracy'] = ensemble_performance_frame[ 'test_accuracy' ].cummax() ensemble_performance_frame.drop(columns=['test_accuracy', 'train_accuracy'], inplace=True) individual_performance_frame['single_best_optimization_accuracy'] = individual_performance_frame[ 'single_best_optimization_accuracy' ].cummax() individual_performance_frame['single_best_test_accuracy'] = individual_performance_frame[ 'single_best_test_accuracy' ].cummax() pd.merge( ensemble_performance_frame, individual_performance_frame, on="Timestamp", how='outer' ).sort_values('Timestamp').fillna(method='ffill').plot( x='Timestamp', kind='line', legend=True, title='Auto-PyTorch accuracy over time', grid=True, ) plt.show() .. image-sg:: /examples/40_advanced/images/sphx_glr_example_visualization_001.png :alt: Auto-PyTorch accuracy over time :srcset: /examples/40_advanced/images/sphx_glr_example_visualization_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 3 minutes 43.317 seconds) .. _sphx_glr_download_examples_40_advanced_example_visualization.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/automl/Auto-PyTorch/development?urlpath=lab/tree/notebooks/examples/40_advanced/example_visualization.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: example_visualization.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: example_visualization.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_