.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/20_basics/example_tabular_regression.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_20_basics_example_tabular_regression.py: ====================== Tabular Regression ====================== The following example shows how to fit a sample regression model with AutoPyTorch .. GENERATED FROM PYTHON SOURCE LINES 9-27 .. code-block:: default import os import tempfile as tmp import warnings import sklearn.datasets import sklearn.model_selection os.environ['JOBLIB_TEMP_FOLDER'] = tmp.gettempdir() os.environ['OMP_NUM_THREADS'] = '1' os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' warnings.simplefilter(action='ignore', category=UserWarning) warnings.simplefilter(action='ignore', category=FutureWarning) from autoPyTorch.api.tabular_regression import TabularRegressionTask .. GENERATED FROM PYTHON SOURCE LINES 28-30 Data Loading ============ .. GENERATED FROM PYTHON SOURCE LINES 30-37 .. code-block:: default X, y = sklearn.datasets.fetch_openml(name='boston', return_X_y=True, as_frame=True) X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split( X, y, random_state=1, ) .. GENERATED FROM PYTHON SOURCE LINES 38-40 Build and fit a regressor ========================== .. GENERATED FROM PYTHON SOURCE LINES 40-42 .. code-block:: default api = TabularRegressionTask() .. GENERATED FROM PYTHON SOURCE LINES 43-45 Search for an ensemble of machine learning algorithms ===================================================== .. GENERATED FROM PYTHON SOURCE LINES 45-56 .. code-block:: default api.search( X_train=X_train, y_train=y_train, X_test=X_test.copy(), y_test=y_test.copy(), optimize_metric='r2', total_walltime_limit=300, func_eval_time_limit_secs=50, dataset_name="Boston" ) .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 57-59 Print the final ensemble performance before refit ================================================= .. GENERATED FROM PYTHON SOURCE LINES 59-66 .. code-block:: default y_pred = api.predict(X_test) score = api.score(y_pred, y_test) print(score) # Print statistics from search print(api.sprint_statistics()) .. rst-class:: sphx-glr-script-out .. code-block:: none {'r2': 0.9407884171054208} autoPyTorch results: Dataset name: Boston Optimisation Metric: r2 Best validation score: 0.8670098636440993 Number of target algorithm runs: 23 Number of successful target algorithm runs: 22 Number of crashed target algorithm runs: 0 Number of target algorithms that exceeded the time limit: 1 Number of target algorithms that exceeded the memory limit: 0 .. GENERATED FROM PYTHON SOURCE LINES 67-69 Refit the models on the full dataset. ===================================== .. GENERATED FROM PYTHON SOURCE LINES 69-84 .. code-block:: default api.refit( X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test, dataset_name="Boston", total_walltime_limit=500, run_time_limit_secs=50 # you can change the resampling strategy to # for example, CrossValTypes.k_fold_cross_validation # to fit k fold models and have a voting classifier # resampling_strategy=CrossValTypes.k_fold_cross_validation ) .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 85-87 Print the final ensemble performance after refit ================================================ .. GENERATED FROM PYTHON SOURCE LINES 87-94 .. code-block:: default y_pred = api.predict(X_test) score = api.score(y_pred, y_test) print(score) # Print the final ensemble built by AutoPyTorch print(api.show_models()) .. rst-class:: sphx-glr-script-out .. code-block:: none {'r2': 0.9378277102071694} | | Preprocessing | Estimator | Weight | |---:|:-------------------------------------------------------------------------------------------------|:----------------------------------------------------------------|---------:| | 0 | None | CBLearner | 0.44 | | 1 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.42 | | 2 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 | | 3 | None | LGBMLearner | 0.04 | .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 6 minutes 52.064 seconds) .. _sphx_glr_download_examples_20_basics_example_tabular_regression.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/automl/Auto-PyTorch/development?urlpath=lab/tree/notebooks/examples/20_basics/example_tabular_regression.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: example_tabular_regression.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: example_tabular_regression.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_